Last updated: 2024-08-16

Checks: 7 0

Knit directory: SSD_and_sexual_selection_2024/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230430) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version cd21614. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory

Unstaged changes:
    Modified:   analysis/_site.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index.Rmd) and HTML (docs/index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html cd21614 LennartWinkler 2024-08-16 Build site.
Rmd 6eb630e LennartWinkler 2024-08-16 wflow_publish(republish = TRUE, all = T)
html 884cafd LennartWinkler 2024-05-11 Build site.
Rmd 84c3659 LennartWinkler 2024-05-11 wflow_publish(all = T)
html 84c3659 LennartWinkler 2024-05-11 wflow_publish(all = T)
html 66fef12 LennartWinkler 2024-05-01 Build site.
Rmd 7fd037e LennartWinkler 2024-05-01 wflow_publish(all = T)
html 7fd037e LennartWinkler 2024-05-01 wflow_publish(all = T)
html b028b7d LennartWinkler 2023-05-24 Build site.
Rmd c1d3311 LennartWinkler 2023-05-24 wflow_publish(all = T)
html 71d667c LennartWinkler 2023-05-03 Build site.
Rmd 378a58c LennartWinkler 2023-05-03 wflow_publish(republish = TRUE, all = T)
html 085f45f LennartWinkler 2023-05-03 Build site.
Rmd 85c143e LennartWinkler 2023-05-03 update
html 8edd942 LennartWinkler 2023-05-01 Build site.
Rmd d131cd9 LennartWinkler 2023-05-01 wflow_publish(republish = TRUE, all = T)
Rmd 57ca562 LennartWinkler 2023-04-30 update
html 054a12b LennartWinkler 2023-04-30 Build site.
Rmd 1a5561c LennartWinkler 2023-04-30 wflow_publish(all = T)
Rmd 4482c88 LennartWinkler 2023-04-30 Start workflowr project.

Supplementary material reporting R code for the manuscript ‘Pre-copulatory sexual selection predicts sexual size dimorphism: a meta-analysis of comparative studies’.

Additional analyses excluding studies that did not control for phylogenetic non-independence (Supplement 2) can be found at:
https://https://lennartwinkler.github.io/SSD_and_sexual_selection_2024/index2.html
# Load and prepare data Before we started the analyses, we loaded all necessary packages and data.

rm(list = ls()) # Clear work environment

# Load R-packages ####
list_of_packages=cbind('ape','matrixcalc','metafor','Matrix','MASS','pwr','psych','multcomp','data.table','ggplot2','RColorBrewer','MCMCglmm','ggdist','cowplot','PupillometryR','dplyr','wesanderson','gridExtra')
lapply(list_of_packages, require, character.only = TRUE)

# Load data set ####
MetaData <- read.csv("./data/Data_SexSelSSD.csv", sep=";", header=TRUE) # Load data set

N_Studies <- length(summary(as.factor(MetaData$Study_ID))) # Number of included primary studies

Tree<- read.tree("./data/Pyologeny_SexSelSSD.txt") # Load phylogenetic tree

# Prune phylogenetic tree
MetaData_Class_Data <- unique(MetaData$Class)
Tree_Class<-drop.tip(Tree, Tree$tip.label[-na.omit(match(MetaData_Class_Data, Tree$tip.label))])
forcedC_Moderators <- as.matrix(forceSymmetric(vcv(Tree_Class, corr=TRUE)))

# Order moderator levels
MetaData$SexSel_Episode=as.factor(MetaData$SexSel_Episode)
MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("post-copulatory"))
MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("pre-copulatory"))
MetaData$Class=as.factor(MetaData$Class)
MetaData$z=as.numeric(MetaData$z)

# Set figure theme and colors
theme=theme(panel.border = element_blank(), 
            panel.background = element_blank(),
            panel.grid.major = element_blank(),
            panel.grid.minor = element_blank(), 
            legend.position = c(0.2,0.5),
            legend.title = element_blank(),
            legend.text = element_text(colour="black", size=12),
            axis.line.x = element_line(colour = "black", linewidth = 1),
            axis.line.y = element_line(colour = "black", linewidth = 1),
            axis.text.x = element_text(face="plain", color="black", size=12, angle=0),
            axis.text.y = element_text(face="plain", color="black", size=12, angle=0),
            axis.title.x = element_text(size=14,face="plain", margin = margin(r=0,10,0,0)),
            axis.title.y = element_text(size=14,face="plain", margin = margin(r=10,0,0,0)),
            axis.ticks = element_line(linewidth = 1),
            axis.ticks.length = unit(.3, "cm"))

colpal=c('#003d6cff','#0c7accff','#5a9c97ff')

colpal2=brewer.pal(7, 'Dark2')
colpal3=brewer.pal(10, 'BrBG')
colpal4=c("grey50","grey65")
colpal5=c("#8C2D04","#CC4C02", "#EC7014", "#FE9929", "#FEC44F","#A8DDB5","#A8DDB5", "#7BCCC4", "#4EB3D3", "#2B8CBE", "#08589E")
colpal6=c("#8C2D04","#CC4C02", "#EC7014", "#FE9929", "#FEC44F","#A8DDB5", "#7BCCC4", "#4EB3D3", "#2B8CBE", "#08589E")
Meta_col=c('#5a9c97ff','#0c7accff','#003d6cff','black')

Global models

We addressed the question if increasing sexual selection correlated with an increasingly male-biased SSD. For this we ran a global model including an observation-level index and the study identifier as random termson correlation coefficients that were positive if increasing sexual selection correlated with an increasingly male-biased SSD, but negative if increasing sexual selection correlated with an increasingly female-biased SSD.

First, we ran a global model including the phylogeny:

Model_REML_Null         = rma.mv(r ~ 1, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_Null)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-24.1841   48.3683   56.3683   67.7134   56.6989   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0215  0.1467     77     no  Study_ID   no 
sigma^2.2  0.0469  0.2166    127     no     Index   no 
sigma^2.3  0.0118  0.1084     11     no     Class  yes 

Test for Heterogeneity:
Q(df = 126) = 1607.5311, p-val < .0001

Model Results:

estimate      se    zval    pval   ci.lb   ci.ub      
  0.2584  0.0708  3.6509  0.0003  0.1197  0.3971  *** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Second, we ran a global model without the phylogeny:

Model_cREML_Null         = rma.mv(r ~ 1, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_Null)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-25.6599   51.3199   57.3199   65.8287   57.5166   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0317  0.1781     77     no  Study_ID 
sigma^2.2  0.0451  0.2123    127     no     Index 

Test for Heterogeneity:
Q(df = 126) = 1607.5311, p-val < .0001

Model Results:

estimate      se    zval    pval   ci.lb   ci.ub      
  0.2767  0.0312  8.8726  <.0001  0.2156  0.3378  *** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Moderator tests for phylogenetic models

Next, we ran a series of models that test the effect of different moderators.
Again we started with models including the phylogeny.

Sexual selection episode

The first model explores the effect of the different episodes of sexual selection (i.e. pre-copulatory, post-copulatory or both):

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("pre-copulatory"))
Model_REML_by_SexSelEpisode = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelEpisode)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
 -7.9463   15.8925   27.8925   44.8142   28.6105   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0171  0.1308     77     no  Study_ID   no 
sigma^2.2  0.0326  0.1807    127     no     Index   no 
sigma^2.3  0.0115  0.1073     11     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 124) = 1378.0070, p-val < .0001

Test of Moderators (coefficients 2:3):
QM(df = 2) = 38.0922, p-val < .0001

Model Results:

                                       estimate      se     zval    pval 
intrcpt                                  0.2582  0.0731   3.5332  0.0004 
factor(SexSel_Episode)post-copulatory   -0.3591  0.0805  -4.4613  <.0001 
factor(SexSel_Episode)both               0.1412  0.0519   2.7198  0.0065 
                                         ci.lb    ci.ub      
intrcpt                                 0.1150   0.4014  *** 
factor(SexSel_Episode)post-copulatory  -0.5168  -0.2013  *** 
factor(SexSel_Episode)both              0.0394   0.2429   ** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("post-copulatory"))
Model_REML_by_SexSelEpisode2 = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelEpisode2)

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("both"))
Model_REML_by_SexSelEpisode3 = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelEpisode3)

Finally, we computed FDR corrected p-values:

tab1=as.data.frame(round(p.adjust(c(0.0005, 0.2849, .0001), method = 'fdr'),digit=3),row.names=cbind("Pre-copulatory","Post-copulatory","Both"))
colnames(tab1)<-cbind('P-value')
tab1
                P-value
Pre-copulatory    0.001
Post-copulatory   0.285
Both              0.000

Plot sexual selection mode (Figure 3)

Here we plot the sexual selection mode moderator:

MetaData$SexSel_Episode=factor(MetaData$SexSel_Episode, levels = c("both","post-copulatory" ,"pre-copulatory"))

ggplot(MetaData, aes(x=SexSel_Episode, y=r, fill = SexSel_Episode, colour = SexSel_Episode)) +
  geom_hline(yintercept=0, linetype="longdash", color = "black", linewidth=1)+
  geom_flat_violin(position = position_nudge(x = 0.25, y = 0),adjust =1, trim = F,alpha=0.6)+
  geom_point(position = position_jitter(width = .1), size = 2.5,alpha=0.6,stroke=0,shape=19)+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelEpisode$ci.lb[1], x=3.25, xend= 3.25, yend= Model_REML_by_SexSelEpisode$ci.ub[1]), alpha=1,linewidth=1,color='black')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelEpisode2$ci.lb[1], x=2.25, xend= 2.25, yend= Model_REML_by_SexSelEpisode2$ci.ub[1]), alpha=1,linewidth=1,color='black')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelEpisode3$ci.lb[1], x=1.25, xend= 1.25, yend= Model_REML_by_SexSelEpisode3$ci.ub[1]), alpha=1,linewidth=1,color='black')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelEpisode$b[1,1], x=3.25), size = 3.5,alpha=1,stroke=1,shape=21,fill='grey50',color='black')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelEpisode2$b[1,1], x=2.25), size = 3.5,alpha=1,stroke=1,shape=21,fill='white',color='black')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelEpisode3$b[1,1], x=1.25), size = 3.5,alpha=1,stroke=1,shape=21,fill='black',color='black')+
  ylab(expression(paste("Effect size (", italic("r"),')')))+xlab('Sexual selection episode')+coord_flip()+guides(fill = FALSE, colour = FALSE) +
  scale_color_manual(values =colpal)+
  scale_fill_manual(values =colpal)+
  scale_x_discrete(labels=c("Pre- and      \n post-copulatory","Post-copulatory" ,"Pre-copulatory"),expand=c(.1,0))+
  annotate("text", x=1, y=1.2, label= "n = 52",size=4.5) +
  annotate("text", x=2, y=1.2, label= "n = 19",size=4.5) +
  annotate("text", x=3, y=1.2, label= "n = 56",size=4.5) + theme
Figure 3: Raincloud plot of correlation coefficients between SSD and the modes of sexual selection proxies (i.e. pre-copulatory, post-copulatory or both) including sample sizes and estimates with 95%CI from phylogenetic model.

Figure 3: Raincloud plot of correlation coefficients between SSD and the modes of sexual selection proxies (i.e. pre-copulatory, post-copulatory or both) including sample sizes and estimates with 95%CI from phylogenetic model.

Version Author Date
cd21614 LennartWinkler 2024-08-16
7fd037e LennartWinkler 2024-05-01
8edd942 LennartWinkler 2023-05-01

Sexual selection category

Next we explored the effect of the sexual selection category (i.e. density, mating system, operational sex ratio (OSR), post-mating competition, pre-mating competition, trait-based, other):

MetaData$SexSel_Category=as.factor(MetaData$SexSel_Category)
MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Postmating competition"))
Model_REML_by_SexSelCat = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
  6.9109  -13.8217    6.1783   34.0532    8.1966   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0206  0.1436     77     no  Study_ID   no 
sigma^2.2  0.0180  0.1343    127     no     Index   no 
sigma^2.3  0.0103  0.1014     11     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 120) = 949.5416, p-val < .0001

Test of Moderators (coefficients 2:7):
QM(df = 6) = 86.9845, p-val < .0001

Model Results:

                                              estimate      se     zval    pval 
intrcpt                                        -0.1169  0.0881  -1.3261  0.1848 
factor(SexSel_Category)Density                  0.3307  0.1204   2.7468  0.0060 
factor(SexSel_Category)Mating system            0.4846  0.0786   6.1635  <.0001 
factor(SexSel_Category)OSR                      0.7187  0.1183   6.0759  <.0001 
factor(SexSel_Category)Other                    0.4501  0.0926   4.8600  <.0001 
factor(SexSel_Category)Premating competition    0.4668  0.0805   5.7991  <.0001 
factor(SexSel_Category)Trait-based              0.1204  0.0873   1.3800  0.1676 
                                                ci.lb   ci.ub      
intrcpt                                       -0.2896  0.0559      
factor(SexSel_Category)Density                 0.0947  0.5667   ** 
factor(SexSel_Category)Mating system           0.3305  0.6387  *** 
factor(SexSel_Category)OSR                     0.4868  0.9505  *** 
factor(SexSel_Category)Other                   0.2686  0.6316  *** 
factor(SexSel_Category)Premating competition   0.3091  0.6246  *** 
factor(SexSel_Category)Trait-based            -0.0506  0.2914      

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Trait-based"))
Model_REML_by_SexSelCat2 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat2)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Density"))
Model_REML_by_SexSelCat3 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat3)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Premating competition"))
Model_REML_by_SexSelCat4 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat4)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Mating system"))
Model_REML_by_SexSelCat5 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat5)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("OSR"))
Model_REML_by_SexSelCat6 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat6)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Other"))
Model_REML_by_SexSelCat7 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat7)

Finally, we computed FDR corrected p-values:

tab2=as.data.frame(round(p.adjust(c(0.1888, 0.9711, 0.0722, .0001, .0001, .0001, .0001), method = 'fdr'),digit=3),row.names=cbind("Postmating competition","Trait-based","Density",'Premating competition',"Mating system","OSR","Other"))
colnames(tab2)<-cbind('P-value')
tab2
                       P-value
Postmating competition   0.220
Trait-based              0.971
Density                  0.101
Premating competition    0.000
Mating system            0.000
OSR                      0.000
Other                    0.000

Plot sexual selection category (Figure S1)

Here we plot the sexual selection category moderator:

MetaData$SexSel_Category=factor(MetaData$SexSel_Category, levels = rev(c( "Postmating competition","Trait-based" ,"Density","Premating competition" ,"Mating system" , "OSR", "Other")))

ggplot(MetaData, aes(x=SexSel_Category, y=r, fill = SexSel_Category, colour = SexSel_Category)) +
  geom_hline(yintercept=0, linetype="longdash", color = "black", linewidth=1)+
  geom_flat_violin(position = position_nudge(x = 0.25, y = 0),adjust =1, trim = F,alpha=0.6)+
  geom_point(position = position_jitter(width = .1), size = 2.5,alpha=0.6,stroke=0,shape=19)+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat$b[1,1], x=7.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat2$b[1,1], x=6.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat3$b[1,1], x=5.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat4$b[1,1], x=4.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat5$b[1,1], x=3.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat6$b[1,1], x=2.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat7$b[1,1], x=1.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat$ci.lb[1], x=7.25, xend= 7.25, yend= Model_REML_by_SexSelCat$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat2$ci.lb[1], x=6.25, xend= 6.25, yend= Model_REML_by_SexSelCat2$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat3$ci.lb[1], x=5.25, xend= 5.25, yend= Model_REML_by_SexSelCat3$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat4$ci.lb[1], x=4.25, xend= 4.25, yend= Model_REML_by_SexSelCat4$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat5$ci.lb[1], x=3.25, xend= 3.25, yend= Model_REML_by_SexSelCat5$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat6$ci.lb[1], x=2.25, xend= 2.25, yend= Model_REML_by_SexSelCat6$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SexSelCat7$ci.lb[1], x=1.25, xend= 1.25, yend= Model_REML_by_SexSelCat7$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  ylab(expression(paste("Effect size (", italic("r"),')')))+xlab('Sexual selection category')+coord_flip()+guides(fill = FALSE, colour = FALSE) +
  scale_color_manual(values =colpal2)+
  scale_fill_manual(values =colpal2)+
  scale_x_discrete(labels=rev(c( "Post-mating\ncompetition","Trait-based" ,"Population\ndensity","Pre-mating\ncompetition" ,"Mating\nsystem" , "Sex ratio", "Other")),expand=c(.1,0))+
  annotate("text", x=7, y=1.2, label= "n = 19",size=4.5) +
  annotate("text", x=6, y=1.2, label= "n = 18",size=4.5) +
  annotate("text", x=5, y=1.2, label= "n = 5",size=4.5) +
  annotate("text", x=4, y=1.2, label= "n = 25",size=4.5) +
  annotate("text", x=3, y=1.2, label= "n = 36",size=4.5) +
  annotate("text", x=2, y=1.2, label= "n = 7",size=4.5) +
  annotate("text", x=1, y=1.2, label= "n = 17",size=4.5) + theme
Figure S1: Raincloud plot of correlation coefficients between SSD and different sexual selection categories including sample sizes and estimates with 95%CI from phylogenetic model.

Figure S1: Raincloud plot of correlation coefficients between SSD and different sexual selection categories including sample sizes and estimates with 95%CI from phylogenetic model.

Version Author Date
cd21614 LennartWinkler 2024-08-16
7fd037e LennartWinkler 2024-05-01
8edd942 LennartWinkler 2023-05-01

Type of SSD measure

Next we explored the effect of the type of SSD measure (i.e. body mass or size):

MetaData$SSD_Proxy=as.factor(MetaData$SSD_Proxy)
MetaData$SSD_Proxy=relevel(MetaData$SSD_Proxy,c("Body mass"))
Model_REML_by_SSDMeasure = rma.mv(r ~ SSD_Proxy, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SSDMeasure)

Multivariate Meta-Analysis Model (k = 125; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-23.9352   47.8704   57.8704   71.9314   58.3833   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0244  0.1561     76     no  Study_ID   no 
sigma^2.2  0.0470  0.2167    125     no     Index   no 
sigma^2.3  0.0039  0.0625     11     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 123) = 1553.9370, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 2.7123, p-val = 0.0996

Model Results:

                    estimate      se     zval    pval    ci.lb   ci.ub      
intrcpt               0.3409  0.0678   5.0296  <.0001   0.2081  0.4737  *** 
SSD_ProxyBody size   -0.1055  0.0641  -1.6469  0.0996  -0.2311  0.0201    . 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SSD_Proxy=relevel(MetaData$SSD_Proxy,c("Body size"))
Model_REML_by_SSDMeasure2 = rma.mv(r ~ SSD_Proxy, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SSDMeasure2)

Finally, we computed FDR corrected p-values:

tab3=as.data.frame(round(p.adjust(c(.0001, .0001), method = 'fdr'),digit=3),row.names=cbind("Body mass","Body size"))
colnames(tab3)<-cbind('P-value')
tab3
          P-value
Body mass       0
Body size       0

Plot Type of SSD measure (Figure S2A)

Here we plot the type of SSD measure moderator:

MetaData_NAProxy=MetaData[!is.na(MetaData$SSD_Proxy),]
MetaData_NAProxy$SSD_Proxy=as.factor(MetaData_NAProxy$SSD_Proxy)
MetaData_NAProxy$SSD_Proxy=relevel(MetaData_NAProxy$SSD_Proxy,c("Body size"))

ggplot(MetaData_NAProxy, aes(x=SSD_Proxy, y=r, fill = SSD_Proxy, colour = SSD_Proxy)) +
  geom_hline(yintercept=0, linetype="longdash", color = "black", linewidth=1)+
  geom_flat_violin(position = position_nudge(x = 0.25, y = 0),adjust =1, trim = F,alpha=0.6)+
  geom_point(position = position_jitter(width = .1), size = 2.5,alpha=0.6,stroke=0,shape=19)+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SSDMeasure$b[1,1], x=2.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_SSDMeasure2$b[1,1], x=1.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SSDMeasure$ci.lb[1], x=2.25, xend= 2.25, yend= Model_REML_by_SSDMeasure$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_SSDMeasure2$ci.lb[1], x=1.25, xend= 1.25, yend= Model_REML_by_SSDMeasure2$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  ylab(expression(paste("Effect size (", italic("r"),')')))+xlab('SSD proxy')+coord_flip()+guides(fill = FALSE, colour = FALSE) +
  scale_color_manual(values =colpal4)+
  scale_fill_manual(values =colpal4)+
  scale_x_discrete(labels=rev(c("Body \nmass ","Body \n size ")),expand=c(.15,0))+
  annotate("text", x=2, y=1.1, label= "n = 58",size=3.5) +
  annotate("text", x=1, y=1.1, label= "n = 67",size=3.5)  + theme
Figure S2A: Raincloud plot of correlation coefficients for different types of SSD measures (i.e. body mass or size) including sample sizes and estimates with 95% CI from phylogenetic model.

Figure S2A: Raincloud plot of correlation coefficients for different types of SSD measures (i.e. body mass or size) including sample sizes and estimates with 95% CI from phylogenetic model.

Version Author Date
cd21614 LennartWinkler 2024-08-16
7fd037e LennartWinkler 2024-05-01
b028b7d LennartWinkler 2023-05-24
085f45f LennartWinkler 2023-05-03

SSD measure controlled for body size?

Next we explored the effect if the primary study controlled the SSD for body size (i.e. uncontrolled or controlled):

MetaData$BodySizeControlled=as.factor(MetaData$BodySizeControlled)
MetaData$BodySizeControlled=relevel(MetaData$BodySizeControlled,c("No"))
Model_REML_by_BodySizeCont = rma.mv(r ~ BodySizeControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_BodySizeCont)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-23.9170   47.8340   57.8340   71.9756   58.3382   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0215  0.1467     77     no  Study_ID   no 
sigma^2.2  0.0470  0.2169    127     no     Index   no 
sigma^2.3  0.0110  0.1050     11     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 125) = 1601.6900, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 0.9348, p-val = 0.3336

Model Results:

                       estimate      se     zval    pval    ci.lb   ci.ub      
intrcpt                  0.2732  0.0709   3.8520  0.0001   0.1342  0.4121  *** 
BodySizeControlledYes   -0.0825  0.0853  -0.9668  0.3336  -0.2496  0.0847      

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$BodySizeControlled=relevel(MetaData$BodySizeControlled,c("Yes"))
Model_REML_by_BodySizeCont2 = rma.mv(r ~ BodySizeControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_BodySizeCont2)

Finally, we computed FDR corrected p-values:

tab4=as.data.frame(round(p.adjust(c(0.0002, 0.0566), method = 'fdr'),digit=3),row.names=cbind("uncontrolled","controlled"))
colnames(tab4)<-cbind('P-value')
tab4
             P-value
uncontrolled   0.000
controlled     0.057

Plot: SSD measure controlled for body size? (Figure S2B)

Here we plot effect sizes if type of SSD measure controlled for body size:

MetaData$BodySizeControlled=as.factor(MetaData$BodySizeControlled)
MetaData$BodySizeControlled=relevel(MetaData$BodySizeControlled,c("Yes"))

ggplot(MetaData, aes(x=BodySizeControlled, y=r, fill = BodySizeControlled, colour = BodySizeControlled)) +
  geom_hline(yintercept=0, linetype="longdash", color = "black", linewidth=1)+
  geom_flat_violin(position = position_nudge(x = 0.25, y = 0),adjust =1, trim = F,alpha=0.6)+
  geom_point(position = position_jitter(width = .1), size = 2.5,alpha=0.6,stroke=0,shape=19)+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_BodySizeCont$b[1,1], x=2.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_REML_by_BodySizeCont2$b[1,1], x=1.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_BodySizeCont$ci.lb[1], x=2.25, xend= 2.25, yend= Model_REML_by_BodySizeCont$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_REML_by_BodySizeCont2$ci.lb[1], x=1.25, xend= 1.25, yend= Model_REML_by_BodySizeCont2$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  ylab(expression(paste("Effect size (", italic("r"),')')))+xlab('Controlling SSD \n for body size or mass')+coord_flip()+guides(fill = FALSE, colour = FALSE) +
  scale_color_manual(values =colpal4)+
  scale_fill_manual(values =colpal4)+
  scale_x_discrete(labels=(c("Controlled","Uncontrolled")),expand=c(.15,0))+
  annotate("text", x=2, y=1.1, label= "n = 110",size=3.5) +
  annotate("text", x=1, y=1.1, label= "n = 17",size=3.5)  + theme
Figure S2B: Raincloud plot of correlation coefficients for primary studies controlling SSD for body size or mass (uncontrolled or controlled) including sample sizes and estimates with 95% CI from phylogenetic model.

Figure S2B: Raincloud plot of correlation coefficients for primary studies controlling SSD for body size or mass (uncontrolled or controlled) including sample sizes and estimates with 95% CI from phylogenetic model.

Version Author Date
cd21614 LennartWinkler 2024-08-16
7fd037e LennartWinkler 2024-05-01
b028b7d LennartWinkler 2023-05-24
085f45f LennartWinkler 2023-05-03

Phylogentic vs non-phylogenetic studies

Next we explored the effect of studies controlling for phylogeny vs non-phylogenetic studies:

MetaData$PhyloControlled=as.factor(MetaData$PhyloControlled)
MetaData$PhyloControlled=relevel(MetaData$PhyloControlled,c("No"))
Model_cREML_by_Phylo = rma.mv(r ~ PhyloControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_cREML_by_Phylo)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.7974   41.5949   51.5949   65.7364   52.0991   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0133  0.1154     77     no  Study_ID   no 
sigma^2.2  0.0491  0.2216    127     no     Index   no 
sigma^2.3  0.0120  0.1097     11     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 125) = 1428.7953, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 7.7357, p-val = 0.0054

Model Results:

                    estimate      se     zval    pval    ci.lb    ci.ub      
intrcpt               0.4226  0.0926   4.5634  <.0001   0.2411   0.6040  *** 
PhyloControlledYes   -0.2052  0.0738  -2.7813  0.0054  -0.3498  -0.0606   ** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$PhyloControlled=relevel(MetaData$PhyloControlled,c("Yes"))
Model_cREML_by_Phylo2 = rma.mv(r ~ PhyloControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_cREML_by_Phylo2)

Finally, we computed FDR corrected p-values:

tab5=as.data.frame(round(p.adjust(c(0.0001, 0.0028), method = 'fdr'),digit=3),row.names=cbind("Non-phylogenetic","With phylogeny"))
colnames(tab5)<-cbind('P-value')
tab5
                 P-value
Non-phylogenetic   0.000
With phylogeny     0.003

Plot Phylogentic vs non-phylogenetic studies (Figure S2C)

Here we plot the type of SSD measure moderator:

MetaData$PhyloControlled=as.factor(MetaData$PhyloControlled)
MetaData$PhyloControlled=relevel(MetaData$PhyloControlled,c("No"))

ggplot(MetaData, aes(x=PhyloControlled, y=r, fill = PhyloControlled, colour = PhyloControlled)) +
  geom_hline(yintercept=0, linetype="longdash", color = "black", linewidth=1)+
  geom_flat_violin(position = position_nudge(x = 0.25, y = 0),adjust =1, trim = F,alpha=0.6)+
  geom_point(position = position_jitter(width = .1), size = 2.5,alpha=0.6,stroke=0,shape=19)+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Phylo2$b[1,1], x=2.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Phylo$b[1,1], x=1.25), size = 3.5,alpha=1,stroke=0,shape=19,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Phylo2$ci.lb[1], x=2.25, xend= 2.25, yend= Model_cREML_by_Phylo2$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Phylo$ci.lb[1], x=1.25, xend= 1.25, yend= Model_cREML_by_Phylo$ci.ub[1]), alpha=1,linewidth=1,color='grey30')+
  ylab(expression(paste("Effect size (", italic("r"),')')))+xlab('Controlling for phylogeny')+coord_flip()+guides(fill = FALSE, colour = FALSE) +
  scale_color_manual(values =colpal4)+
  scale_fill_manual(values =colpal4)+
  scale_x_discrete(labels=(c("Phylogenetically \n uncorrected ","Phylogenetically \n corrected ")),expand=c(.15,0))+
  annotate("text", x=1, y=1.1, label= "n = 23",size=3.5) +
  annotate("text", x=2, y=1.1, label= "n = 104",size=3.5)  + theme
Figure S2C: Raincloud plot of correlation coefficients for non-phylogenetic and phylogenetic analyses in primary studies including sample sizes and estimates with 95% CI from phylogenetic model (Table 4).

Figure S2C: Raincloud plot of correlation coefficients for non-phylogenetic and phylogenetic analyses in primary studies including sample sizes and estimates with 95% CI from phylogenetic model (Table 4).

Version Author Date
cd21614 LennartWinkler 2024-08-16
7fd037e LennartWinkler 2024-05-01
b028b7d LennartWinkler 2023-05-24
085f45f LennartWinkler 2023-05-03

Percentage of species with female-biased SSD

There was variation in the primary studies regarding the typical SSD in the studied taxa (i.e. some studies focused on taxa with more male-biased SSD, while others on taxa with more female-biased SSD). Still, there was no significant relationship between the percentage of species with a female-biased SSD and effect sizes.

MetaData_SSDbias=MetaData
MetaData_SSDbias=MetaData_SSDbias[!is.na(MetaData_SSDbias$SSD_SexBias_in_perc_F),]
Model_REML_SSbias         = rma.mv(r ~ SSD_SexBias_in_perc_F, V=Var_r, data = MetaData_SSDbias, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_SSbias)

Multivariate Meta-Analysis Model (k = 108; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.4032   40.8063   50.8063   64.1235   51.4063   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0273  0.1651     67     no  Study_ID   no 
sigma^2.2  0.0453  0.2128    108     no     Index   no 
sigma^2.3  0.0063  0.0794     11     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 106) = 1489.6620, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 3.6045, p-val = 0.0576

Model Results:

                       estimate      se     zval    pval    ci.lb   ci.ub      
intrcpt                  0.3864  0.0832   4.6432  <.0001   0.2233  0.5495  *** 
SSD_SexBias_in_perc_F   -0.0022  0.0011  -1.8985  0.0576  -0.0044  0.0001    . 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure S3A

model_p1 <- predict(Model_REML_SSbias) # Extract model predictions

ggplot(MetaData_SSDbias, aes(x=as.numeric(SSD_SexBias_in_perc_F), y=r)) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line = element_line(colour = "black"))+
  theme(axis.text=element_text(size=13),
        axis.title=element_text(size=14))+ theme(legend.position="none")+
  geom_point(shape=16, size = 3,alpha=0.5)+xlab('% of species with \n female-biased SSD')+ylab(expression(paste("Effect size (", italic("r"),')')))+
  geom_hline(yintercept=0, linetype="dashed", color = "black", linewidth=1)+
  geom_line( aes(y = model_p1$pred), size = 1)+ 
  geom_ribbon( aes(ymin = model_p1$ci.lb, ymax = model_p1$ci.ub, color = 'black',linetype=NA), alpha = .15,show.legend = F, outline.type = "both") +
  theme
Figure S3A: Scatter plot of the sPercentage of species with a female-biased SSD. Dashed line marks a correlation coefficient of zero, black line represents predictions from REML model (controlling for phylogeny) and grey area represents 95% CI on model predictions.

Figure S3A: Scatter plot of the sPercentage of species with a female-biased SSD. Dashed line marks a correlation coefficient of zero, black line represents predictions from REML model (controlling for phylogeny) and grey area represents 95% CI on model predictions.

Version Author Date
cd21614 LennartWinkler 2024-08-16
66fef12 LennartWinkler 2024-05-01

Test for publication bias

To test for publication bias, we transformed r into z scores and ran multilevel mixed-effects models (restricted maximum likelihood) with z as the predictor and its standard error as the response with study ID and an observation level random effect. Models were weight by the mean standard error of z across all studies. While the variance in r depends on the effect size and the sample size, the variance in z is only dependent on the sample size. Hence, if z values correlate with the variance in z, this indicates that small studies were only published, if the effect was large, suggesting publication bias.

Model_REML_PublBias         = rma.mv(z ~ SE_z, V=rep((mean(SE_z)*mean(SE_z))*N,length(SE_z)), data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML",control=list(rel.tol=1e-8))
summary(Model_REML_PublBias)

Multivariate Meta-Analysis Model (k = 127; method: REML)

   logLik   Deviance        AIC        BIC       AICc   
-166.7309   333.4618   343.4618   357.6033   343.9660   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0000  0.0000     77     no  Study_ID   no 
sigma^2.2  0.0000  0.0000    127     no     Index   no 
sigma^2.3  0.0000  0.0002     11     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 125) = 14.7570, p-val = 1.0000

Test of Moderators (coefficient 2):
QM(df = 1) = 1.4805, p-val = 0.2237

Model Results:

         estimate      se    zval    pval    ci.lb   ci.ub    
intrcpt    0.1965  0.1969  0.9978  0.3184  -0.1895  0.5825    
SE_z       0.7067  0.5808  1.2168  0.2237  -0.4317  1.8452    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure S3B

# Extract model predictions
model_p2 <- predict(Model_REML_PublBias)

ggplot(MetaData, aes(x=SE_z, y=z)) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line = element_line(colour = "black"))+
  theme(axis.text=element_text(size=13),
        axis.title=element_text(size=14))+ theme(legend.position="none")+ylab(expression(paste("Effect size (", italic("z"),')')))+
  geom_point(shape=16, size = 3,alpha=0.5)+xlab('Standard error')+
  geom_hline(yintercept=0, linetype="dashed", color = "black", linewidth=1)+
  geom_line( aes(y = model_p2$pred), size = 1)+ 
  geom_ribbon( aes(ymin = model_p2$ci.lb, ymax = model_p2$ci.ub, color = 'black',linetype=NA), alpha = .15,show.legend = F, outline.type = "both") +
  theme
Figure S3B: Scatter plot of the standard error in z scores of each study against the z score of each primary study (transformed correlation coefficients). Dashed line marks a correlation coefficient of zero, black line represents predictions from REML model (controlling for phylogeny) and grey area represents 95% CI on model predictions.

Figure S3B: Scatter plot of the standard error in z scores of each study against the z score of each primary study (transformed correlation coefficients). Dashed line marks a correlation coefficient of zero, black line represents predictions from REML model (controlling for phylogeny) and grey area represents 95% CI on model predictions.

Version Author Date
cd21614 LennartWinkler 2024-08-16
66fef12 LennartWinkler 2024-05-01

Publication year

Next we explored the effect of the publication year of each study:

Model_REML_by_Year = rma.mv(r ~ Year, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_Year)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.6385   41.2769   51.2769   65.4185   51.7811   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0165  0.1285     77     no  Study_ID   no 
sigma^2.2  0.0462  0.2148    127     no     Index   no 
sigma^2.3  0.0118  0.1087     11     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 125) = 1344.0152, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 7.9645, p-val = 0.0048

Model Results:

         estimate      se     zval    pval    ci.lb    ci.ub     
intrcpt   12.9132  4.4856   2.8788  0.0040   4.1216  21.7048  ** 
Year      -0.0063  0.0022  -2.8221  0.0048  -0.0107  -0.0019  ** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Plot publication year (Figure S3C)

Here we plot the publication year:

# Extract model predictions
Model_REML_by_Year = rma.mv(r ~ Year, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
model_p4 <- predict(Model_REML_by_Year)

ggplot(MetaData, aes(x=as.numeric(Year), y=r)) +
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line = element_line(colour = "black"))+
  theme(axis.text=element_text(size=13),
        axis.title=element_text(size=14))+ theme(legend.position="none")+
  geom_point(shape=16, size = 3,alpha=0.5)+xlab('Publication year')+ylab(expression(paste("Effect size (", italic("r"),')')))+
  geom_hline(yintercept=0, linetype="dashed", color = "black", linewidth=1)+
  geom_line( aes(y = model_p4$pred), size = 1)+ 
  geom_ribbon( aes(ymin = model_p4$ci.lb, ymax = model_p4$ci.ub, color = 'black',linetype=NA), alpha = .15,show.legend = F, outline.type = "both") +
  theme
Figure S3C: Scatter plot of correlation coefficients against the publication year of each study. Dashed line marks a correlation coefficient of zero, black line represents predictions from REML model (controlling for phylogeny) and grey area represents 95% CI on model predictions.

Figure S3C: Scatter plot of correlation coefficients against the publication year of each study. Dashed line marks a correlation coefficient of zero, black line represents predictions from REML model (controlling for phylogeny) and grey area represents 95% CI on model predictions.

Version Author Date
cd21614 LennartWinkler 2024-08-16
66fef12 LennartWinkler 2024-05-01

Moderator tests for non-phylogenetic models

Here we ran all models without the phylogeny.

Sexual selection episode

The first model explores the effect of the sexual selection episode (i.e. pre-copulatory, post-copulatory or both):

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("pre-copulatory"))
Model_REML_by_cSexSelEpisode = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelEpisode)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
 -9.8630   19.7261   29.7261   43.8275   30.2346   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0241  0.1553     77     no  Study_ID 
sigma^2.2  0.0327  0.1809    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 124) = 1378.0070, p-val < .0001

Test of Moderators (coefficients 2:3):
QM(df = 2) = 36.8836, p-val < .0001

Model Results:

                                       estimate      se     zval    pval 
intrcpt                                  0.2470  0.0389   6.3556  <.0001 
factor(SexSel_Episode)both               0.1694  0.0526   3.2225  0.0013 
factor(SexSel_Episode)post-copulatory   -0.3236  0.0820  -3.9455  <.0001 
                                         ci.lb    ci.ub      
intrcpt                                 0.1708   0.3231  *** 
factor(SexSel_Episode)both              0.0664   0.2725   ** 
factor(SexSel_Episode)post-copulatory  -0.4843  -0.1628  *** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("post-copulatory"))
Model_REML_by_cSexSelEpisode2 = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelEpisode2)

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("both"))
Model_REML_by_cSexSelEpisode3 = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index),  method = "REML")
summary(Model_REML_by_cSexSelEpisode3)

Finally, we computed FDR corrected p-values:

tab1=as.data.frame(round(p.adjust(c(0.0001, 0.2970, .0001), method = 'fdr'),digit=3),row.names=cbind("Pre-copulatory","Post-copulatory","Both"))
colnames(tab1)<-cbind('P-value')
tab1
                P-value
Pre-copulatory    0.000
Post-copulatory   0.297
Both              0.000

Sexual selection category

Next we explored the effect of the sexual selection category (i.e. density, mating system, operational sex ratio (OSR), post-mating competition, pre-mating competition, trait-based, other):

MetaData$SexSel_Category=as.factor(MetaData$SexSel_Category)
MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Postmating competition"))
Model_REML_by_cSexSelCat = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
  5.8687  -11.7375    6.2625   31.3500    7.8989   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0259  0.1608     77     no  Study_ID 
sigma^2.2  0.0180  0.1342    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 120) = 949.5416, p-val < .0001

Test of Moderators (coefficients 2:7):
QM(df = 6) = 87.8526, p-val < .0001

Model Results:

                                              estimate      se     zval    pval 
intrcpt                                        -0.0713  0.0679  -1.0500  0.2937 
factor(SexSel_Category)Other                    0.4440  0.0935   4.7493  <.0001 
factor(SexSel_Category)OSR                      0.7075  0.1191   5.9398  <.0001 
factor(SexSel_Category)Mating system            0.4795  0.0785   6.1080  <.0001 
factor(SexSel_Category)Premating competition    0.4355  0.0817   5.3291  <.0001 
factor(SexSel_Category)Density                  0.3297  0.1219   2.7042  0.0068 
factor(SexSel_Category)Trait-based              0.0902  0.0863   1.0452  0.2959 
                                                ci.lb   ci.ub      
intrcpt                                       -0.2045  0.0618      
factor(SexSel_Category)Other                   0.2608  0.6272  *** 
factor(SexSel_Category)OSR                     0.4740  0.9409  *** 
factor(SexSel_Category)Mating system           0.3257  0.6334  *** 
factor(SexSel_Category)Premating competition   0.2753  0.5956  *** 
factor(SexSel_Category)Density                 0.0907  0.5687   ** 
factor(SexSel_Category)Trait-based            -0.0790  0.2594      

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Trait-based"))
Model_REML_by_cSexSelCat2 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat2)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Density"))
Model_REML_by_cSexSelCat3 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat3)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Premating competition"))
Model_REML_by_cSexSelCat4 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat4)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Mating system"))
Model_REML_by_cSexSelCat5 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat5)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("OSR"))
Model_REML_by_cSexSelCat6 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat6)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Other"))
Model_REML_by_cSexSelCat7 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat7)

Finally, we computed FDR corrected p-values:

tab2=as.data.frame(round(p.adjust(c(0.2937, 0.7259, 0.0110, .0001, .0001, .0001, .0001), method = 'fdr'),digit=3),row.names=cbind("Postmating competition","Trait-based","Density",'Premating competition',"Mating system","OSR","Other"))
colnames(tab2)<-cbind('P-value')
tab2
                       P-value
Postmating competition   0.343
Trait-based              0.726
Density                  0.015
Premating competition    0.000
Mating system            0.000
OSR                      0.000
Other                    0.000

Phylogenetic classes

Next we explored the effect of the phylogenetic classes:

MetaData$Class=relevel(MetaData$Class,c("Actinopterygii"))
Model_cREML_by_Class5 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class5)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.5793   41.1586   67.1586  102.9553   70.7272   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1421     77     no  Study_ID 
sigma^2.2  0.0492  0.2217    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 116) = 1256.7618, p-val < .0001

Test of Moderators (coefficients 2:11):
QM(df = 10) = 15.7503, p-val = 0.1070

Model Results:

                   estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt              0.2237  0.1104   2.0264  0.0427   0.0073  0.4400  * 
ClassAmphibia       -0.1024  0.1429  -0.7165  0.4737  -0.3825  0.1777    
ClassAnimalia        0.0022  0.2490   0.0089  0.9929  -0.4859  0.4903    
ClassAves           -0.0041  0.1228  -0.0333  0.9734  -0.2448  0.2366    
ClassInsecta         0.1610  0.1596   1.0088  0.3131  -0.1518  0.4737    
ClassMalacostraca   -0.2215  0.3536  -0.6263  0.5311  -0.9145  0.4716    
ClassMammalia        0.1764  0.1197   1.4739  0.1405  -0.0582  0.4109    
ClassNematoda        0.1983  0.2666   0.7438  0.4570  -0.3242  0.7207    
ClassPisces          0.0346  0.2897   0.1196  0.9048  -0.5332  0.6025    
ClassReptilia       -0.0616  0.1385  -0.4446  0.6566  -0.3330  0.2099    
ClassTrematoda      -0.1544  0.2286  -0.6754  0.4994  -0.6025  0.2937    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Amphibia"))
Model_cREML_by_Class4 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class4)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.5793   41.1586   67.1586  102.9553   70.7272   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1421     77     no  Study_ID 
sigma^2.2  0.0492  0.2217    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 116) = 1256.7618, p-val < .0001

Test of Moderators (coefficients 2:11):
QM(df = 10) = 15.7503, p-val = 0.1070

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub     
intrcpt                0.1213  0.0908   1.3357  0.1816  -0.0567  0.2992     
ClassActinopterygii    0.1024  0.1429   0.7165  0.4737  -0.1777  0.3825     
ClassAnimalia          0.1046  0.2410   0.4341  0.6642  -0.3677  0.5769     
ClassAves              0.0983  0.1063   0.9252  0.3549  -0.1099  0.3065     
ClassInsecta           0.2634  0.1476   1.7838  0.0745  -0.0260  0.5527   . 
ClassMalacostraca     -0.1191  0.3480  -0.3422  0.7322  -0.8011  0.5629     
ClassMammalia          0.2788  0.1031   2.7032  0.0069   0.0766  0.4809  ** 
ClassNematoda          0.3007  0.2591   1.1606  0.2458  -0.2071  0.8084     
ClassPisces            0.1370  0.2829   0.4845  0.6280  -0.4174  0.6914     
ClassReptilia          0.0408  0.1235   0.3305  0.7410  -0.2012  0.2829     
ClassTrematoda        -0.0520  0.2243  -0.2319  0.8166  -0.4917  0.3876     

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Animalia"))
Model_cREML_by_Class11 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class11)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.5793   41.1586   67.1586  102.9553   70.7272   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1421     77     no  Study_ID 
sigma^2.2  0.0492  0.2217    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 116) = 1256.7618, p-val < .0001

Test of Moderators (coefficients 2:11):
QM(df = 10) = 15.7503, p-val = 0.1070

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt                0.2259  0.2232   1.0119  0.3116  -0.2116  0.6634    
ClassAmphibia         -0.1046  0.2410  -0.4341  0.6642  -0.5769  0.3677    
ClassActinopterygii   -0.0022  0.2490  -0.0089  0.9929  -0.4903  0.4859    
ClassAves             -0.0063  0.2300  -0.0275  0.9781  -0.4570  0.4444    
ClassInsecta           0.1587  0.2518   0.6305  0.5284  -0.3347  0.6522    
ClassMalacostraca     -0.2237  0.4033  -0.5546  0.5792  -1.0142  0.5668    
ClassMammalia          0.1741  0.2285   0.7620  0.4460  -0.2738  0.6221    
ClassNematoda          0.1961  0.3297   0.5946  0.5521  -0.4502  0.8423    
ClassPisces            0.0324  0.3487   0.0930  0.9259  -0.6510  0.7159    
ClassReptilia         -0.0638  0.2384  -0.2676  0.7890  -0.5311  0.4035    
ClassTrematoda        -0.1567  0.3032  -0.5167  0.6054  -0.7508  0.4375    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Aves"))
Model_cREML_by_Class = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.5793   41.1586   67.1586  102.9553   70.7272   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1421     77     no  Study_ID 
sigma^2.2  0.0492  0.2217    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 116) = 1256.7618, p-val < .0001

Test of Moderators (coefficients 2:11):
QM(df = 10) = 15.7503, p-val = 0.1070

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub      
intrcpt                0.2196  0.0552   3.9772  <.0001   0.1114  0.3278  *** 
ClassAnimalia          0.0063  0.2300   0.0275  0.9781  -0.4444  0.4570      
ClassAmphibia         -0.0983  0.1063  -0.9252  0.3549  -0.3065  0.1099      
ClassActinopterygii    0.0041  0.1228   0.0333  0.9734  -0.2366  0.2448      
ClassInsecta           0.1651  0.1286   1.2832  0.1994  -0.0871  0.4172      
ClassMalacostraca     -0.2174  0.3404  -0.6385  0.5232  -0.8846  0.4499      
ClassMammalia          0.1805  0.0728   2.4783  0.0132   0.0377  0.3232    * 
ClassNematoda          0.2024  0.2488   0.8133  0.4161  -0.2854  0.6901      
ClassPisces            0.0387  0.2735   0.1416  0.8874  -0.4974  0.5748      
ClassReptilia         -0.0575  0.0996  -0.5773  0.5637  -0.2526  0.1377      
ClassTrematoda        -0.1503  0.2115  -0.7109  0.4771  -0.5648  0.2641      

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Insecta"))
Model_cREML_by_Class8 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class8)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.5793   41.1586   67.1586  102.9553   70.7272   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1421     77     no  Study_ID 
sigma^2.2  0.0492  0.2217    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 116) = 1256.7618, p-val < .0001

Test of Moderators (coefficients 2:11):
QM(df = 10) = 15.7503, p-val = 0.1070

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub      
intrcpt                0.3846  0.1164   3.3033  0.0010   0.1564  0.6128  *** 
ClassAves             -0.1651  0.1286  -1.2832  0.1994  -0.4172  0.0871      
ClassAnimalia         -0.1587  0.2518  -0.6305  0.5284  -0.6522  0.3347      
ClassAmphibia         -0.2634  0.1476  -1.7838  0.0745  -0.5527  0.0260    . 
ClassActinopterygii   -0.1610  0.1596  -1.0088  0.3131  -0.4737  0.1518      
ClassMalacostraca     -0.3824  0.3555  -1.0757  0.2821  -1.0792  0.3144      
ClassMammalia          0.0154  0.1259   0.1224  0.9026  -0.2314  0.2622      
ClassNematoda          0.0373  0.2691   0.1386  0.8897  -0.4902  0.5648      
ClassPisces           -0.1263  0.2921  -0.4325  0.6654  -0.6988  0.4462      
ClassReptilia         -0.2225  0.1434  -1.5519  0.1207  -0.5036  0.0585      
ClassTrematoda        -0.3154  0.2343  -1.3463  0.1782  -0.7746  0.1438      

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Malacostraca"))
Model_cREML_by_Class7 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class7)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.5793   41.1586   67.1586  102.9553   70.7272   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1421     77     no  Study_ID 
sigma^2.2  0.0492  0.2217    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 116) = 1256.7618, p-val < .0001

Test of Moderators (coefficients 2:11):
QM(df = 10) = 15.7503, p-val = 0.1070

Model Results:

                     estimate      se    zval    pval    ci.lb   ci.ub    
intrcpt                0.0022  0.3359  0.0065  0.9948  -0.6562  0.6606    
ClassInsecta           0.3824  0.3555  1.0757  0.2821  -0.3144  1.0792    
ClassAves              0.2174  0.3404  0.6385  0.5232  -0.4499  0.8846    
ClassAnimalia          0.2237  0.4033  0.5546  0.5792  -0.5668  1.0142    
ClassAmphibia          0.1191  0.3480  0.3422  0.7322  -0.5629  0.8011    
ClassActinopterygii    0.2215  0.3536  0.6263  0.5311  -0.4716  0.9145    
ClassMammalia          0.3978  0.3395  1.1719  0.2412  -0.2675  1.0632    
ClassNematoda          0.4197  0.4144  1.0129  0.3111  -0.3925  1.2319    
ClassPisces            0.2561  0.4297  0.5960  0.5511  -0.5860  1.0982    
ClassReptilia          0.1599  0.3462  0.4618  0.6442  -0.5187  0.8384    
ClassTrematoda         0.0670  0.3936  0.1703  0.8648  -0.7044  0.8385    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Mammalia"))
Model_cREML_by_Class3 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class3)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.5793   41.1586   67.1586  102.9553   70.7272   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1421     77     no  Study_ID 
sigma^2.2  0.0492  0.2217    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 116) = 1256.7618, p-val < .0001

Test of Moderators (coefficients 2:11):
QM(df = 10) = 15.7503, p-val = 0.1070

Model Results:

                     estimate      se     zval    pval    ci.lb    ci.ub      
intrcpt                0.4000  0.0489   8.1767  <.0001   0.3041   0.4959  *** 
ClassMalacostraca     -0.3978  0.3395  -1.1719  0.2412  -1.0632   0.2675      
ClassInsecta          -0.0154  0.1259  -0.1224  0.9026  -0.2622   0.2314      
ClassAves             -0.1805  0.0728  -2.4783  0.0132  -0.3232  -0.0377    * 
ClassAnimalia         -0.1741  0.2285  -0.7620  0.4460  -0.6221   0.2738      
ClassAmphibia         -0.2788  0.1031  -2.7032  0.0069  -0.4809  -0.0766   ** 
ClassActinopterygii   -0.1764  0.1197  -1.4739  0.1405  -0.4109   0.0582      
ClassNematoda          0.0219  0.2475   0.0885  0.9295  -0.4632   0.5070      
ClassPisces           -0.1417  0.2723  -0.5204  0.6028  -0.6755   0.3920      
ClassReptilia         -0.2380  0.0964  -2.4678  0.0136  -0.4269  -0.0490    * 
ClassTrematoda        -0.3308  0.2092  -1.5810  0.1139  -0.7409   0.0793      

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Nematoda"))
Model_cREML_by_Class10 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class10)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.5793   41.1586   67.1586  102.9553   70.7272   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1421     77     no  Study_ID 
sigma^2.2  0.0492  0.2217    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 116) = 1256.7618, p-val < .0001

Test of Moderators (coefficients 2:11):
QM(df = 10) = 15.7503, p-val = 0.1070

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt                0.4219  0.2426   1.7389  0.0821  -0.0536  0.8975  . 
ClassMammalia         -0.0219  0.2475  -0.0885  0.9295  -0.5070  0.4632    
ClassMalacostraca     -0.4197  0.4144  -1.0129  0.3111  -1.2319  0.3925    
ClassInsecta          -0.0373  0.2691  -0.1386  0.8897  -0.5648  0.4902    
ClassAves             -0.2024  0.2488  -0.8133  0.4161  -0.6901  0.2854    
ClassAnimalia         -0.1961  0.3297  -0.5946  0.5521  -0.8423  0.4502    
ClassAmphibia         -0.3007  0.2591  -1.1606  0.2458  -0.8084  0.2071    
ClassActinopterygii   -0.1983  0.2666  -0.7438  0.4570  -0.7207  0.3242    
ClassPisces           -0.1636  0.3614  -0.4527  0.6508  -0.8721  0.5448    
ClassReptilia         -0.2599  0.2567  -1.0124  0.3114  -0.7629  0.2432    
ClassTrematoda        -0.3527  0.3177  -1.1101  0.2670  -0.9754  0.2700    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Pisces"))
Model_cREML_by_Class6 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class6)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.5793   41.1586   67.1586  102.9553   70.7272   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1421     77     no  Study_ID 
sigma^2.2  0.0492  0.2217    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 116) = 1256.7618, p-val < .0001

Test of Moderators (coefficients 2:11):
QM(df = 10) = 15.7503, p-val = 0.1070

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt                0.2583  0.2679   0.9642  0.3350  -0.2668  0.7834    
ClassNematoda          0.1636  0.3614   0.4527  0.6508  -0.5448  0.8721    
ClassMammalia          0.1417  0.2723   0.5204  0.6028  -0.3920  0.6755    
ClassMalacostraca     -0.2561  0.4297  -0.5960  0.5511  -1.0982  0.5860    
ClassInsecta           0.1263  0.2921   0.4325  0.6654  -0.4462  0.6988    
ClassAves             -0.0387  0.2735  -0.1416  0.8874  -0.5748  0.4974    
ClassAnimalia         -0.0324  0.3487  -0.0930  0.9259  -0.7159  0.6510    
ClassAmphibia         -0.1370  0.2829  -0.4845  0.6280  -0.6914  0.4174    
ClassActinopterygii   -0.0346  0.2897  -0.1196  0.9048  -0.6025  0.5332    
ClassReptilia         -0.0962  0.2807  -0.3428  0.7317  -0.6463  0.4539    
ClassTrematoda        -0.1891  0.3374  -0.5604  0.5752  -0.8504  0.4722    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Reptilia"))
Model_cREML_by_Class2 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class2)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.5793   41.1586   67.1586  102.9553   70.7272   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1421     77     no  Study_ID 
sigma^2.2  0.0492  0.2217    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 116) = 1256.7618, p-val < .0001

Test of Moderators (coefficients 2:11):
QM(df = 10) = 15.7503, p-val = 0.1070

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt                0.1621  0.0837   1.9358  0.0529  -0.0020  0.3262  . 
ClassPisces            0.0962  0.2807   0.3428  0.7317  -0.4539  0.6463    
ClassNematoda          0.2599  0.2567   1.0124  0.3114  -0.2432  0.7629    
ClassMammalia          0.2380  0.0964   2.4678  0.0136   0.0490  0.4269  * 
ClassMalacostraca     -0.1599  0.3462  -0.4618  0.6442  -0.8384  0.5187    
ClassInsecta           0.2225  0.1434   1.5519  0.1207  -0.0585  0.5036    
ClassAves              0.0575  0.0996   0.5773  0.5637  -0.1377  0.2526    
ClassAnimalia          0.0638  0.2384   0.2676  0.7890  -0.4035  0.5311    
ClassAmphibia         -0.0408  0.1235  -0.3305  0.7410  -0.2829  0.2012    
ClassActinopterygii    0.0616  0.1385   0.4446  0.6566  -0.2099  0.3330    
ClassTrematoda        -0.0928  0.2215  -0.4192  0.6751  -0.5270  0.3413    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Trematoda"))
Model_cREML_by_Class9 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class9)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.5793   41.1586   67.1586  102.9553   70.7272   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1421     77     no  Study_ID 
sigma^2.2  0.0492  0.2217    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 116) = 1256.7618, p-val < .0001

Test of Moderators (coefficients 2:11):
QM(df = 10) = 15.7503, p-val = 0.1070

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt                0.0692  0.2051   0.3375  0.7357  -0.3328  0.4713    
ClassReptilia          0.0928  0.2215   0.4192  0.6751  -0.3413  0.5270    
ClassPisces            0.1891  0.3374   0.5604  0.5752  -0.4722  0.8504    
ClassNematoda          0.3527  0.3177   1.1101  0.2670  -0.2700  0.9754    
ClassMammalia          0.3308  0.2092   1.5810  0.1139  -0.0793  0.7409    
ClassMalacostraca     -0.0670  0.3936  -0.1703  0.8648  -0.8385  0.7044    
ClassInsecta           0.3154  0.2343   1.3463  0.1782  -0.1438  0.7746    
ClassAves              0.1503  0.2115   0.7109  0.4771  -0.2641  0.5648    
ClassAnimalia          0.1567  0.3032   0.5167  0.6054  -0.4375  0.7508    
ClassAmphibia          0.0520  0.2243   0.2319  0.8166  -0.3876  0.4917    
ClassActinopterygii    0.1544  0.2286   0.6754  0.4994  -0.2937  0.6025    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Finally, we computed FDR corrected p-values:

tab2=as.data.frame(round(p.adjust(c(.0001, 0.0529, .0001, 0.1816, 0.0427, 0.3350, 0.9948, 0.0010, 0.7357, 0.0821, 0.3116), method = 'fdr'),digit=3),row.names=cbind( "Animalia","Nematoda","Trematoda","Insecta","Malacostraca","Pisces" ,"Actinopterygii","Amphibia","Mammalia","Reptilia","Aves"))
colnames(tab2)<-cbind('P-value')
tab2
               P-value
Animalia         0.001
Nematoda         0.116
Trematoda        0.001
Insecta          0.285
Malacostraca     0.116
Pisces           0.409
Actinopterygii   0.995
Amphibia         0.004
Mammalia         0.809
Reptilia         0.151
Aves             0.409

Plot phylogenetic classes (Figure 1)

Here we plot the phylogenetic classes:

MetaData$Class=as.factor(MetaData$Class)
MetaData$Class=factor(MetaData$Class, levels = (c("Animalia","Nematoda","Trematoda","Insecta","Malacostraca","Pisces" ,"Actinopterygii","Amphibia","Mammalia","Reptilia","Aves")))
MetaData_sorted=MetaData
MetaData_sorted$Class[MetaData_sorted$Class=='Pisces']='Actinopterygii'

ggplot() +
  geom_hline(yintercept=0, linetype="longdash", color = "black", linewidth=1)+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class$ci.lb[1], x=11.35, xend= 11.35, yend= Model_cREML_by_Class$ci.ub[1]),linewidth=1,color=colpal5[11], alpha=1)+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class2$ci.lb[1], x=10.35, xend= 10.35, yend= Model_cREML_by_Class2$ci.ub[1]), alpha=1,linewidth=1,color=colpal5[10])+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class3$ci.lb[1], x=9.35, xend= 9.35, yend= Model_cREML_by_Class3$ci.ub[1]), alpha=1,linewidth=1,color=colpal5[9])+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class4$ci.lb[1], x=8.35, xend= 8.35, yend= Model_cREML_by_Class4$ci.ub[1]), alpha=1,linewidth=1,color=colpal5[8])+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class5$ci.lb[1], x=7.35, xend= 7.35, yend= Model_cREML_by_Class5$ci.ub[1]), alpha=1,linewidth=1,color=colpal5[7])+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class6$ci.lb[1], x=6.35, xend= 6.35, yend= Model_cREML_by_Class6$ci.ub[1]), alpha=1,linewidth=1,color=colpal5[6])+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class7$ci.lb[1], x=5.35, xend= 5.35, yend= Model_cREML_by_Class7$ci.ub[1]), alpha=1,linewidth=1,color=colpal5[5])+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class8$ci.lb[1], x=4.35, xend= 4.35, yend= Model_cREML_by_Class8$ci.ub[1]), alpha=1,linewidth=1,color=colpal5[4])+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class9$ci.lb[1], x=3.35, xend= 3.35, yend= Model_cREML_by_Class9$ci.ub[1]), alpha=1,linewidth=1,color=colpal5[3])+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class10$ci.lb[1], x=2.35, xend= 2.35, yend= Model_cREML_by_Class10$ci.ub[1]), alpha=1,linewidth=1,color=colpal5[2])+
  geom_segment(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class11$ci.lb[1], x=1.35, xend= 1.35, yend= Model_cREML_by_Class11$ci.ub[1]), alpha=1,linewidth=1,color=colpal5[1])+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class$b[1,1], x=11.35), size = 3.5,alpha=1,stroke=0,shape=19,color='white')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class2$b[1,1], x=10.35), size = 3.5,alpha=1,stroke=0,shape=19,color='white')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class3$b[1,1], x=9.35), size = 3.5,alpha=1,stroke=0,shape=19,color='white')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class4$b[1,1], x=8.35), size = 3.5,alpha=1,stroke=0,shape=19,color='white')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class5$b[1,1], x=7.35), size = 3.5,alpha=1,stroke=0,shape=19,color='white')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class6$b[1,1], x=6.35), size = 3.5,alpha=1,stroke=0,shape=19,color='white')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class7$b[1,1], x=5.35), size = 3.5,alpha=1,stroke=0,shape=19,color='white')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class8$b[1,1], x=4.35), size = 3.5,alpha=1,stroke=0,shape=19,color='white')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class9$b[1,1], x=3.35), size = 3.5,alpha=1,stroke=0,shape=19,color='white')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class10$b[1,1], x=2.35), size = 3.5,alpha=1,stroke=0,shape=19,color='white')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class11$b[1,1], x=1.35), size = 3.5,alpha=1,stroke=0,shape=19,color='white')+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class$b[1,1], x=11.35), size = 3.5,alpha=1,stroke=0,shape=19,color=colpal5[11])+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class2$b[1,1], x=10.35), size = 3.5,alpha=1,stroke=0,shape=19,color=colpal5[10])+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class3$b[1,1], x=9.35), size = 3.5,alpha=1,stroke=0,shape=19,color=colpal5[9])+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class4$b[1,1], x=8.35), size = 3.5,alpha=1,stroke=0,shape=19,color=colpal5[8])+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class5$b[1,1], x=7.35), size = 3.5,alpha=1,stroke=0,shape=19,color=colpal5[7])+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class6$b[1,1], x=6.35), size = 3.5,alpha=1,stroke=0,shape=19,color=colpal5[6])+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class7$b[1,1], x=5.35), size = 3.5,alpha=1,stroke=0,shape=19,color=colpal5[5])+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class8$b[1,1], x=4.35), size = 3.5,alpha=1,stroke=0,shape=19,color=colpal5[4])+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class9$b[1,1], x=3.35), size = 3.5,alpha=1,stroke=0,shape=19,color=colpal5[3])+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class10$b[1,1], x=2.35), size = 3.5,alpha=1,stroke=0,shape=19,color=colpal5[2])+
  geom_point(inherit.aes = F,mapping = aes(y=Model_cREML_by_Class11$b[1,1], x=1.35), size = 3.5,alpha=1,stroke=0,shape=19,color=colpal5[1])+
  ylab(expression(paste("Effect size (", italic("r"),')')))+xlab('Class')+coord_flip()+guides(fill = FALSE, colour = FALSE) +
  scale_x_discrete(labels=(c("Animalia","Nematoda","Trematoda","Insecta","Malacostraca","Pisces" ,"Actinopterygii","Amphibia","Mammalia","Reptilia","Aves")),expand=c(.1,0))+
  geom_point(data=MetaData,aes(x=Class, y=r, fill = Class, colour = Class),position = position_jitter(width = .1), size = 2.5,alpha=0.6,stroke=0,shape=19)+
  scale_color_manual(values =colpal5)+
  scale_fill_manual(values =colpal5)+
  theme
Figure 1: Phylogeny based on classes including sample sizes for the number of studies and number of effect sizes, respectively, and estimates with 95%CI from non-phylogenetic model.

Figure 1: Phylogeny based on classes including sample sizes for the number of studies and number of effect sizes, respectively, and estimates with 95%CI from non-phylogenetic model.

Version Author Date
cd21614 LennartWinkler 2024-08-16
7fd037e LennartWinkler 2024-05-01
8edd942 LennartWinkler 2023-05-01

Type of SSD measure

Next we explored the effect of the type of SSD measure (i.e. body mass or size):

MetaData$SSD_Proxy=as.factor(MetaData$SSD_Proxy)
MetaData$SSD_Proxy=relevel(MetaData$SSD_Proxy,c("Body mass"))
Model_REML_by_cSSDMeasure = rma.mv(r ~ SSD_Proxy, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSSDMeasure)

Multivariate Meta-Analysis Model (k = 125; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-24.0901   48.1801   56.1801   67.4289   56.5191   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0268  0.1638     76     no  Study_ID 
sigma^2.2  0.0465  0.2156    125     no     Index 

Test for Residual Heterogeneity:
QE(df = 123) = 1553.9370, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 4.6542, p-val = 0.0310

Model Results:

                    estimate      se     zval    pval    ci.lb    ci.ub      
intrcpt               0.3484  0.0447   7.7937  <.0001   0.2608   0.4360  *** 
SSD_ProxyBody size   -0.1253  0.0581  -2.1574  0.0310  -0.2391  -0.0115    * 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SSD_Proxy=relevel(MetaData$SSD_Proxy,c("Body size"))
Model_REML_by_cSSDMeasure2 = rma.mv(r ~ SSD_Proxy, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSSDMeasure2)

Finally, we computed FDR corrected p-values:

tab3=as.data.frame(round(p.adjust(c(.0001, .0001), method = 'fdr'),digit=3),row.names=cbind("Body mass","Body size"))
colnames(tab3)<-cbind('P-value')
tab3
          P-value
Body mass       0
Body size       0

SSD measure controlled for body size?

Next we explored the effect if the primary study controlled the SSD for body size (i.e. uncontrolled or controlled):

MetaData$BodySizeControlled=as.factor(MetaData$BodySizeControlled)
MetaData$BodySizeControlled=relevel(MetaData$BodySizeControlled,c("No"))
Model_REML_by_cBodySizeCont = rma.mv(r ~ BodySizeControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cBodySizeCont)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-25.2183   50.4365   58.4365   69.7498   58.7699   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0308  0.1755     77     no  Study_ID 
sigma^2.2  0.0455  0.2132    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 125) = 1601.6900, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 1.2317, p-val = 0.2671

Model Results:

                       estimate      se     zval    pval    ci.lb   ci.ub      
intrcpt                  0.2907  0.0336   8.6540  <.0001   0.2249  0.3566  *** 
BodySizeControlledYes   -0.0971  0.0875  -1.1098  0.2671  -0.2687  0.0744      

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$BodySizeControlled=relevel(MetaData$BodySizeControlled,c("Yes"))
Model_REML_by_cBodySizeCont2 = rma.mv(r ~ BodySizeControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cBodySizeCont2)

Finally, we computed FDR corrected p-values:

tab4=as.data.frame(round(p.adjust(c(.0001, 0.0166), method = 'fdr'),digit=3),row.names=cbind("uncontrolled","controlled"))
colnames(tab4)<-cbind('P-value')
tab4
             P-value
uncontrolled   0.000
controlled     0.017

Phylogentic vs non-phylogenetic studies

Next we explored the effect of studies controlling for phylogeny vs non-phylogenetic studies:

MetaData$PhyloControlled=as.factor(MetaData$PhyloControlled)
MetaData$PhyloControlled=relevel(MetaData$PhyloControlled,c("No"))
Model_cREML_by_cPhylo = rma.mv(r ~ PhyloControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_cPhylo)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-22.5511   45.1022   53.1022   64.4155   53.4355   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0234  0.1529     77     no  Study_ID 
sigma^2.2  0.0475  0.2180    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 125) = 1428.7953, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 6.9580, p-val = 0.0083

Model Results:

                    estimate      se     zval    pval    ci.lb    ci.ub      
intrcpt               0.4463  0.0716   6.2341  <.0001   0.3060   0.5866  *** 
PhyloControlledYes   -0.2073  0.0786  -2.6378  0.0083  -0.3614  -0.0533   ** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$PhyloControlled=relevel(MetaData$PhyloControlled,c("Yes"))
Model_cREML_by_cPhylo2 = rma.mv(r ~ PhyloControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_cPhylo2)

Finally, we computed FDR corrected p-values:

tab5=as.data.frame(round(p.adjust(c(0.0001, 0.0001), method = 'fdr'),digit=3),row.names=cbind("Non-phylogenetic","With phylogeny"))
colnames(tab5)<-cbind('P-value')
tab5
                 P-value
Non-phylogenetic       0
With phylogeny         0

Percentage of species with female-biased SSD

Model_cREML_SSbias         = rma.mv(r ~ SSD_SexBias_in_perc_F, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_SSbias)

Multivariate Meta-Analysis Model (k = 108; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.7304   41.4609   49.4609   60.1146   49.8569   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0315  0.1774     67     no  Study_ID 
sigma^2.2  0.0447  0.2115    108     no     Index 

Test for Residual Heterogeneity:
QE(df = 106) = 1489.6620, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 5.7675, p-val = 0.0163

Model Results:

                       estimate      se     zval    pval    ci.lb    ci.ub      
intrcpt                  0.3944  0.0532   7.4116  <.0001   0.2901   0.4988  *** 
SSD_SexBias_in_perc_F   -0.0025  0.0010  -2.4016  0.0163  -0.0045  -0.0005    * 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Test for publication bias

Model_cREML_PublBias         = rma.mv(z ~ SE_z, V=rep(((mean(SE_z)*mean(SE_z))*N),length(SE_z)), data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_PublBias)

Multivariate Meta-Analysis Model (k = 127; method: REML)

   logLik   Deviance        AIC        BIC       AICc   
-166.7309   333.4618   341.4618   352.7750   341.7951   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     77     no  Study_ID 
sigma^2.2  0.0000  0.0000    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 125) = 14.7570, p-val = 1.0000

Test of Moderators (coefficient 2):
QM(df = 1) = 1.4805, p-val = 0.2237

Model Results:

         estimate      se    zval    pval    ci.lb   ci.ub    
intrcpt    0.1965  0.1969  0.9978  0.3184  -0.1895  0.5825    
SE_z       0.7067  0.5808  1.2168  0.2237  -0.4317  1.8452    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Publication year

Next we explored the effect of the publication year of each study:

Model_cREML_by_Year = rma.mv(r ~ Year, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Year)

Multivariate Meta-Analysis Model (k = 127; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-22.2585   44.5171   52.5171   63.8303   52.8504   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0270  0.1643     77     no  Study_ID 
sigma^2.2  0.0441  0.2100    127     no     Index 

Test for Residual Heterogeneity:
QE(df = 125) = 1344.0152, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 7.4667, p-val = 0.0063

Model Results:

         estimate      se     zval    pval    ci.lb    ci.ub     
intrcpt   13.4012  4.8035   2.7899  0.0053   3.9865  22.8159  ** 
Year      -0.0065  0.0024  -2.7325  0.0063  -0.0112  -0.0018  ** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Forest plot

# Sort data by Class
MetaData$Class=as.factor(MetaData$Class)
MetaData$Class=factor(MetaData$Class, levels = c("Animalia","Nematoda","Trematoda","Insecta","Malacostraca","Pisces" ,"Actinopterygii","Amphibia","Mammalia","Reptilia","Aves"))
MetaData_sorted <-MetaData[order(MetaData$r,decreasing = T),]
MetaData_sorted$Class[MetaData_sorted$Class=='Pisces']='Actinopterygii'
MetaData_sorted <-MetaData_sorted[order(MetaData_sorted$Class),]

# Add global effect size to data
forestData=MetaData_sorted[,c(3,5,10,15,18,19)]
forestData[,c(4:6)]=lapply(forestData[,c(4:6)],as.numeric)
forestData$SexSel_Episode=as.factor(forestData$SexSel_Episode)
forestData$SexSel_Episode=factor(forestData$SexSel_Episode, levels = c("pre-copulatory","post-copulatory" ,"both"))

Figure 2

ggplot(data=forestData, aes(y=1:nrow(forestData), x=r, xmin=lCI, xmax=uCI,color=Class,shape=SexSel_Episode,fill=SexSel_Episode)) +
  geom_vline(xintercept=Model_REML_Null$b[1,1], color='black', linetype='solid', alpha=.9,linewidth=0.75)+
  annotate("rect", xmin = Model_REML_Null$ci.lb[1], xmax = Model_REML_Null$ci.ub[1], ymin = 1, ymax = nrow(forestData),alpha = .25)+
geom_vline(xintercept=0, color='black', linetype='dashed', alpha=.5,linewidth=0.8) +
  geom_errorbarh(height=0,size = ifelse(1:nrow(forestData) == c(1), 3.3, 3.3), alpha=1,colour='white')+
  geom_errorbarh(height=0,size = ifelse(1:nrow(forestData) == c(1), 3.3, 3.3), alpha=1)+
  geom_point(size = ifelse(1:nrow(forestData) == c(1), 2, 2), alpha=1,stroke=1,colour='white')+
  geom_point(size = ifelse(1:nrow(forestData) == c(1), 2, 2), alpha=1,stroke=1,colour='black')+
  scale_y_continuous(breaks=seq(1, nrow(forestData), by=1), labels=forestData$AuthorsAndYear,limits=c(1,length(forestData$AuthorsAndYear)),expand=c(0.015,0.015)) +
  labs(title='', x=expression(paste(italic("r "),'(95% CI)')), y = 'Study') +
  theme_classic()+theme(axis.text.x=element_text(size=12),
                        axis.title=element_text(size=12))+ labs(fill =  c("Sexual selection episode"),shape =  c("Sexual selection mode"))+ 
  scale_colour_manual(values=colpal6, labels=NULL,guide = "none")+
  scale_shape_manual(values=c(21,21,21) ,labels=c("Pre-copulatory","Post-copulatory" ,"Both"))+
  scale_fill_manual(values=c('grey50','white','black'),labels=c("Pre-copulatory","Post-copulatory" ,"Both"))
Figure 2: Forest plot including correlation coefficients (±95% CI), as well as the global effect size (in grey) with and without controlling for phylogeny. Different animal classes highlighted by background colors (see Figure 1 for class names) and sexual selection modes pre- (red), post-copulatory (blue) and both (green) by color of effect size.

Figure 2: Forest plot including correlation coefficients (±95% CI), as well as the global effect size (in grey) with and without controlling for phylogeny. Different animal classes highlighted by background colors (see Figure 1 for class names) and sexual selection modes pre- (red), post-copulatory (blue) and both (green) by color of effect size.

Version Author Date
cd21614 LennartWinkler 2024-08-16
7fd037e LennartWinkler 2024-05-01
054a12b LennartWinkler 2023-04-30

sessionInfo()
R version 4.4.0 (2024-04-24 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 10 x64 (build 19045)

Matrix products: default


locale:
[1] LC_COLLATE=German_Germany.utf8  LC_CTYPE=German_Germany.utf8   
[3] LC_MONETARY=German_Germany.utf8 LC_NUMERIC=C                   
[5] LC_TIME=German_Germany.utf8    

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gridExtra_2.3       wesanderson_0.3.7   PupillometryR_0.0.5
 [4] rlang_1.1.3         dplyr_1.1.4         cowplot_1.1.3      
 [7] ggdist_3.3.2        MCMCglmm_2.36       coda_0.19-4.1      
[10] RColorBrewer_1.1-3  ggplot2_3.5.1       data.table_1.15.4  
[13] multcomp_1.4-26     TH.data_1.1-2       survival_3.5-8     
[16] mvtnorm_1.2-4       psych_2.4.6.26      pwr_1.3-0          
[19] MASS_7.3-60.2       metafor_4.6-0       numDeriv_2016.8-1.1
[22] metadat_1.2-0       Matrix_1.7-0        matrixcalc_1.0-6   
[25] ape_5.8             workflowr_1.7.1    

loaded via a namespace (and not attached):
 [1] tidyselect_1.2.1     farver_2.1.2         fastmap_1.1.1       
 [4] tensorA_0.36.2.1     mathjaxr_1.6-0       promises_1.3.0      
 [7] digest_0.6.35        lifecycle_1.0.4      processx_3.8.4      
[10] magrittr_2.0.3       compiler_4.4.0       sass_0.4.9          
[13] tools_4.4.0          utf8_1.2.4           yaml_2.3.8          
[16] knitr_1.46           labeling_0.4.3       mnormt_2.1.1        
[19] withr_3.0.0          purrr_1.0.2          grid_4.4.0          
[22] fansi_1.0.6          git2r_0.33.0         colorspace_2.1-0    
[25] scales_1.3.0         cli_3.6.2            rmarkdown_2.26      
[28] generics_0.1.3       rstudioapi_0.16.0    httr_1.4.7          
[31] cachem_1.0.8         stringr_1.5.1        splines_4.4.0       
[34] parallel_4.4.0       vctrs_0.6.5          sandwich_3.1-0      
[37] jsonlite_1.8.8       callr_3.7.6          jquerylib_0.1.4     
[40] tidyr_1.3.1          glue_1.7.0           codetools_0.2-20    
[43] ps_1.7.6             distributional_0.4.0 stringi_1.8.4       
[46] cubature_2.1.0       gtable_0.3.5         later_1.3.2         
[49] munsell_0.5.1        tibble_3.2.1         pillar_1.9.0        
[52] htmltools_0.5.8.1    R6_2.5.1             rprojroot_2.0.4     
[55] evaluate_0.23        lattice_0.22-6       highr_0.10          
[58] corpcor_1.6.10       httpuv_1.6.15        bslib_0.7.0         
[61] Rcpp_1.0.12          nlme_3.1-164         whisker_0.4.1       
[64] xfun_0.43            fs_1.6.4             zoo_1.8-12          
[67] getPass_0.2-4        pkgconfig_2.0.3