Last updated: 2024-08-16

Checks: 7 0

Knit directory: SSD_and_sexual_selection_2024/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230430) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version cd21614. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory

Unstaged changes:
    Modified:   analysis/_site.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/index2.Rmd) and HTML (docs/index2.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html cd21614 LennartWinkler 2024-08-16 Build site.
Rmd 6eb630e LennartWinkler 2024-08-16 wflow_publish(republish = TRUE, all = T)
html 66fef12 LennartWinkler 2024-05-01 Build site.
Rmd 7fd037e LennartWinkler 2024-05-01 wflow_publish(all = T)
html 7fd037e LennartWinkler 2024-05-01 wflow_publish(all = T)
html b028b7d LennartWinkler 2023-05-24 Build site.
Rmd c1d3311 LennartWinkler 2023-05-24 wflow_publish(all = T)
html 71d667c LennartWinkler 2023-05-03 Build site.
Rmd 378a58c LennartWinkler 2023-05-03 wflow_publish(republish = TRUE, all = T)
html 085f45f LennartWinkler 2023-05-03 Build site.
Rmd 9c4346c LennartWinkler 2023-05-03 wflow_publish(republish = TRUE, all = T)
html 9c4346c LennartWinkler 2023-05-03 wflow_publish(republish = TRUE, all = T)
Rmd 85c143e LennartWinkler 2023-05-03 update
html 8edd942 LennartWinkler 2023-05-01 Build site.
Rmd d131cd9 LennartWinkler 2023-05-01 wflow_publish(republish = TRUE, all = T)
Rmd 57ca562 LennartWinkler 2023-04-30 update
html 57ca562 LennartWinkler 2023-04-30 update
Rmd 7a0f67c LennartWinkler 2023-04-30 Set up project

Supplementary material reporting R code for the manuscript ‘Pre-copulatory sexual selection predicts sexual size dimorphism: a meta-analysis of comparative studies’.
Additional analyses excluding studies that did not correct for phylogenetic non-independence (see Supporting Information). # Load and prepare data Before we started the analyses, we loaded all necessary packages and data.

rm(list = ls()) # Clear work environment

# Load R-packages ####
list_of_packages=cbind('ape','matrixcalc','metafor','Matrix','MASS','pwr','psych','multcomp','data.table','ggplot2','RColorBrewer','MCMCglmm','ggdist','cowplot','PupillometryR','dplyr','wesanderson','gridExtra')
lapply(list_of_packages, require, character.only = TRUE)

# Load data set ####
MetaData <- read.csv("./data/Data_SexSelSSD.csv", sep=";", header=TRUE) # Load data set

# Remove studies that did not correct for phylogenetic non-independence
MetaData=MetaData[MetaData$PhyloControlled=='Yes',]

N_Studies <- length(summary(as.factor(MetaData$Study_ID))) # Number of included primary studies

Tree<- read.tree("./data/Pyologeny_SexSelSSD.txt") # Load phylogenetic tree

# Prune phylogenetic tree
MetaData_Class_Data <- unique(MetaData$Class)
Tree_Class<-drop.tip(Tree, Tree$tip.label[-na.omit(match(MetaData_Class_Data, Tree$tip.label))])
forcedC_Moderators <- as.matrix(forceSymmetric(vcv(Tree_Class, corr=TRUE)))

# Order moderator levels
MetaData$SexSel_Episode=as.factor(MetaData$SexSel_Episode)
MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("post-copulatory"))
MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("pre-copulatory"))
MetaData$Class=as.factor(MetaData$Class)
MetaData$z=as.numeric(MetaData$z)

Global models

We addressed the question if increasing sexual selection correlated with an increasingly male-biased SSD. For this we ran a global model including an observation-level index and the study identifier as random termson correlation coefficients that were positive if increasing sexual selection correlated with an increasingly male-biased SSD, but negative if increasing sexual selection correlated with an increasingly female-biased SSD.

First, we ran a global model including the phylogeny:

Model_REML_Null         = rma.mv(r ~ 1, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_Null)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.2553   40.5106   48.5106   59.0882   48.9146   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0000  0.0000     62     no  Study_ID   no 
sigma^2.2  0.0645  0.2539    105     no     Index   no 
sigma^2.3  0.0194  0.1391     10     no     Class  yes 

Test for Heterogeneity:
Q(df = 104) = 1299.5696, p-val < .0001

Model Results:

estimate      se    zval    pval   ci.lb   ci.ub    
  0.2118  0.0828  2.5582  0.0105  0.0495  0.3741  * 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Second, we ran a global model without the phylogeny:

Model_cREML_Null         = rma.mv(r ~ 1, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_Null)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-23.4061   46.8121   52.8121   60.7453   53.0521   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0211  0.1452     62     no  Study_ID 
sigma^2.2  0.0577  0.2403    105     no     Index 

Test for Heterogeneity:
Q(df = 104) = 1299.5696, p-val < .0001

Model Results:

estimate      se    zval    pval   ci.lb   ci.ub      
  0.2369  0.0334  7.0898  <.0001  0.1714  0.3024  *** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Moderator tests for phylogenetic models

Next, we ran a series of models that test the effect of different moderators.
Again we started with models including the phylogeny.

Sexual selection episode

The first model explores the effect of the sexual selection episode (i.e. pre-copulatory, post-copulatory or both):

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("pre-copulatory"))
Model_REML_by_SexSelEpisode = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelEpisode)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
 -5.2629   10.5258   22.5258   38.2756   23.4100   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0065  0.0806     62     no  Study_ID   no 
sigma^2.2  0.0375  0.1937    105     no     Index   no 
sigma^2.3  0.0201  0.1419     10     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 102) = 1050.7775, p-val < .0001

Test of Moderators (coefficients 2:3):
QM(df = 2) = 37.2830, p-val < .0001

Model Results:

                                       estimate      se     zval    pval 
intrcpt                                  0.2379  0.0858   2.7709  0.0056 
factor(SexSel_Episode)post-copulatory   -0.3301  0.0770  -4.2853  <.0001 
factor(SexSel_Episode)both               0.1535  0.0558   2.7483  0.0060 
                                         ci.lb    ci.ub      
intrcpt                                 0.0696   0.4061   ** 
factor(SexSel_Episode)post-copulatory  -0.4810  -0.1791  *** 
factor(SexSel_Episode)both              0.0440   0.2629   ** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("post-copulatory"))
Model_REML_by_SexSelEpisode2 = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelEpisode2)

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("both"))
Model_REML_by_SexSelEpisode3 = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelEpisode3)

Finally, we computed FDR corrected p-values:

tab1=as.data.frame(round(p.adjust(c(0.0068, 0.3664, .0001), method = 'fdr'),digit=3),row.names=cbind("Pre-copulatory","Post-copulatory","Both"))
colnames(tab1)<-cbind('P-value')
tab1
                P-value
Pre-copulatory    0.010
Post-copulatory   0.366
Both              0.000

Sexual selection category

Next we explored the effect of the sexual selection category (i.e. density, mating system, operational sex ratio (OSR), post-mating competition, pre-mating competition, trait-based, other):

MetaData$SexSel_Category=as.factor(MetaData$SexSel_Category)
MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Postmating competition"))
Model_REML_by_SexSelCat = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
  4.2234   -8.4469   11.5531   37.4028   14.0819   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0151  0.1229     62     no  Study_ID   no 
sigma^2.2  0.0224  0.1497    105     no     Index   no 
sigma^2.3  0.0158  0.1259     10     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 98) = 767.4092, p-val < .0001

Test of Moderators (coefficients 2:7):
QM(df = 6) = 71.8193, p-val < .0001

Model Results:

                                              estimate      se     zval    pval 
intrcpt                                        -0.1275  0.0957  -1.3312  0.1831 
factor(SexSel_Category)Density                  0.3288  0.1226   2.6824  0.0073 
factor(SexSel_Category)Mating system            0.4966  0.0819   6.0658  <.0001 
factor(SexSel_Category)OSR                      0.7321  0.1355   5.4018  <.0001 
factor(SexSel_Category)Other                    0.4692  0.0962   4.8773  <.0001 
factor(SexSel_Category)Premating competition    0.4273  0.0833   5.1308  <.0001 
factor(SexSel_Category)Trait-based              0.1486  0.0884   1.6812  0.0927 
                                                ci.lb   ci.ub      
intrcpt                                       -0.3151  0.0602      
factor(SexSel_Category)Density                 0.0886  0.5690   ** 
factor(SexSel_Category)Mating system           0.3361  0.6570  *** 
factor(SexSel_Category)OSR                     0.4665  0.9977  *** 
factor(SexSel_Category)Other                   0.2806  0.6577  *** 
factor(SexSel_Category)Premating competition   0.2640  0.5905  *** 
factor(SexSel_Category)Trait-based            -0.0246  0.3219    . 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Trait-based"))
Model_REML_by_SexSelCat2 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat2)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Density"))
Model_REML_by_SexSelCat3 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat3)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Premating competition"))
Model_REML_by_SexSelCat4 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat4)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Mating system"))
Model_REML_by_SexSelCat5 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat5)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("OSR"))
Model_REML_by_SexSelCat6 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat6)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Other"))
Model_REML_by_SexSelCat7 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SexSelCat7)

Finally, we computed FDR corrected p-values:

tab2=as.data.frame(round(p.adjust(c(0.1884, 0.8292, 0.1185, 0.0009, 0.0001, .0001, 0.0005), method = 'fdr'),digit=3),row.names=cbind("Postmating competition","Trait-based","Density",'Premating competition',"Mating system","OSR","Other"))
colnames(tab2)<-cbind('P-value')
tab2
                       P-value
Postmating competition   0.220
Trait-based              0.829
Density                  0.166
Premating competition    0.002
Mating system            0.000
OSR                      0.000
Other                    0.001

Type of SSD measure

Next we explored the effect of the type of SSD measure (i.e. body mass or size):

MetaData$SSD_Proxy=as.factor(MetaData$SSD_Proxy)
MetaData$SSD_Proxy=relevel(MetaData$SSD_Proxy,c("Body mass"))
Model_REML_by_SSDMeasure = rma.mv(r ~ SSD_Proxy, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SSDMeasure)

Multivariate Meta-Analysis Model (k = 103; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-19.5015   39.0029   49.0029   62.0785   49.6345   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0000  0.0000     61     no  Study_ID   no 
sigma^2.2  0.0671  0.2590    103     no     Index   no 
sigma^2.3  0.0071  0.0845     10     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 101) = 1236.9117, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 4.6150, p-val = 0.0317

Model Results:

                    estimate      se     zval    pval    ci.lb    ci.ub      
intrcpt               0.3224  0.0783   4.1170  <.0001   0.1689   0.4758  *** 
SSD_ProxyBody size   -0.1467  0.0683  -2.1482  0.0317  -0.2806  -0.0129    * 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SSD_Proxy=relevel(MetaData$SSD_Proxy,c("Body size"))
Model_REML_by_SSDMeasure2 = rma.mv(r ~ SSD_Proxy, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_SSDMeasure2)

Finally, we computed FDR corrected p-values:

tab3=as.data.frame(round(p.adjust(c(.0001, 0.0059), method = 'fdr'),digit=3),row.names=cbind("Body mass","Body size"))
colnames(tab3)<-cbind('P-value')
tab3
          P-value
Body mass   0.000
Body size   0.006

SSD measure controlled for body size?

Next we explored the effect if the primary study controlled the SSD for body size (i.e. uncontrolled or controlled):

MetaData$BodySizeControlled=as.factor(MetaData$BodySizeControlled)
MetaData$BodySizeControlled=relevel(MetaData$BodySizeControlled,c("No"))
Model_REML_by_BodySizeCont = rma.mv(r ~ BodySizeControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_BodySizeCont)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.1921   40.3841   50.3841   63.5578   51.0027   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0000  0.0000     62     no  Study_ID   no 
sigma^2.2  0.0648  0.2546    105     no     Index   no 
sigma^2.3  0.0188  0.1370     10     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 103) = 1297.2607, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 0.6526, p-val = 0.4192

Model Results:

                       estimate      se     zval    pval    ci.lb   ci.ub     
intrcpt                  0.2256  0.0838   2.6934  0.0071   0.0614  0.3898  ** 
BodySizeControlledYes   -0.0692  0.0856  -0.8078  0.4192  -0.2370  0.0987     

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$BodySizeControlled=relevel(MetaData$BodySizeControlled,c("Yes"))
Model_REML_by_BodySizeCont2 = rma.mv(r ~ BodySizeControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_BodySizeCont2)

Finally, we computed FDR corrected p-values:

tab4=as.data.frame(round(p.adjust(c(0.0085, 0.1492), method = 'fdr'),digit=3),row.names=cbind("uncontrolled","controlled"))
colnames(tab4)<-cbind('P-value')
tab4
             P-value
uncontrolled   0.017
controlled     0.149

Percentage of species with female-biased SSD

There was variation in the primary studies regarding the typical SSD in the studied taxa (i.e. some studies focused on taxa with more male-biased SSD, while others on taxa with more female-biased SSD). Still, there was no significant relationship between the percentage of species with a female-biased SSD and effect sizes.

MetaData_SSDbias=MetaData
MetaData_SSDbias=MetaData_SSDbias[!is.na(MetaData_SSDbias$SSD_SexBias_in_perc_F),]
Model_REML_SSbias         = rma.mv(r ~ SSD_SexBias_in_perc_F, V=Var_r, data = MetaData_SSDbias, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_SSbias)

Multivariate Meta-Analysis Model (k = 91; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-17.0719   34.1437   44.1437   56.5869   44.8666   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0072  0.0849     53     no  Study_ID   no 
sigma^2.2  0.0585  0.2419     91     no     Index   no 
sigma^2.3  0.0180  0.1343     10     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 89) = 1207.9887, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 1.8083, p-val = 0.1787

Model Results:

                       estimate      se     zval    pval    ci.lb   ci.ub     
intrcpt                  0.3162  0.1089   2.9037  0.0037   0.1028  0.5296  ** 
SSD_SexBias_in_perc_F   -0.0018  0.0013  -1.3447  0.1787  -0.0044  0.0008     

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Test for publication bias

To test for publication bias, we transformed r into z scores and ran multilevel mixed-effects models (restricted maximum likelihood) with z as the predictor and its standard error as the response with study ID and an observation level random effect. Models were weight by the mean standard error of z across all studies. While the variance in r depends on the effect size and the sample size, the variance in z is only dependent on the sample size. Hence, if z values correlate with the variance in z, this indicates that small studies were only published, if the effect was large, suggesting publication bias.

Model_REML_PublBias         = rma.mv(z ~ SE_z, V=rep((mean(SE_z)*mean(SE_z))*N,length(SE_z)), data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML",control=list(rel.tol=1e-8))
summary(Model_REML_PublBias)

Multivariate Meta-Analysis Model (k = 105; method: REML)

   logLik   Deviance        AIC        BIC       AICc   
-131.2805   262.5610   272.5610   285.7347   273.1796   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0000  0.0000     62     no  Study_ID   no 
sigma^2.2  0.0000  0.0000    105     no     Index   no 
sigma^2.3  0.0000  0.0003     10     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 103) = 15.0179, p-val = 1.0000

Test of Moderators (coefficient 2):
QM(df = 1) = 1.7899, p-val = 0.1809

Model Results:

         estimate      se    zval    pval    ci.lb   ci.ub    
intrcpt    0.1410  0.1956  0.7207  0.4711  -0.2424  0.5243    
SE_z       0.8522  0.6369  1.3379  0.1809  -0.3962  2.1006    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Publication year

Next we explored the effect of the publication year of each study:

Model_REML_by_Year = rma.mv(r ~ Year, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index, ~ 1 | Class), R = list(Class = forcedC_Moderators), method = "REML")
summary(Model_REML_by_Year)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.0318   40.0635   50.0635   63.2372   50.6821   

Variance Components:

            estim    sqrt  nlvls  fixed    factor    R 
sigma^2.1  0.0005  0.0229     62     no  Study_ID   no 
sigma^2.2  0.0639  0.2527    105     no     Index   no 
sigma^2.3  0.0189  0.1375     10     no     Class  yes 

Test for Residual Heterogeneity:
QE(df = 103) = 1165.7023, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 1.0473, p-val = 0.3061

Model Results:

         estimate      se     zval    pval    ci.lb    ci.ub    
intrcpt    6.7004  6.3404   1.0568  0.2906  -5.7266  19.1275    
Year      -0.0032  0.0032  -1.0234  0.3061  -0.0094   0.0030    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Moderator tests for non-phylogenetic models

Here we ran all models without the phylogeny.

Sexual selection episode

The first model explores the effect of the sexual selection episode (i.e. pre-copulatory, post-copulatory or both):

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("pre-copulatory"))
Model_REML_by_cSexSelEpisode = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelEpisode)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
 -9.6012   19.2024   29.2024   42.3272   29.8274   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0202  0.1420     62     no  Study_ID 
sigma^2.2  0.0381  0.1951    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 102) = 1050.7775, p-val < .0001

Test of Moderators (coefficients 2:3):
QM(df = 2) = 32.8599, p-val < .0001

Model Results:

                                       estimate      se     zval    pval 
intrcpt                                  0.2096  0.0420   4.9950  <.0001 
factor(SexSel_Episode)both               0.1966  0.0593   3.3171  0.0009 
factor(SexSel_Episode)post-copulatory   -0.2848  0.0834  -3.4143  0.0006 
                                         ci.lb    ci.ub      
intrcpt                                 0.1274   0.2919  *** 
factor(SexSel_Episode)both              0.0804   0.3128  *** 
factor(SexSel_Episode)post-copulatory  -0.4482  -0.1213  *** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("post-copulatory"))
Model_REML_by_cSexSelEpisode2 = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelEpisode2)

MetaData$SexSel_Episode=relevel(MetaData$SexSel_Episode,c("both"))
Model_REML_by_cSexSelEpisode3 = rma.mv(r ~ factor(SexSel_Episode), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index),  method = "REML")
summary(Model_REML_by_cSexSelEpisode3)

Finally, we computed FDR corrected p-values:

tab1=as.data.frame(round(p.adjust(c(0.0001, 0.3049, .0001), method = 'fdr'),digit=3),row.names=cbind("Pre-copulatory","Post-copulatory","Both"))
colnames(tab1)<-cbind('P-value')
tab1
                P-value
Pre-copulatory    0.000
Post-copulatory   0.305
Both              0.000

Sexual selection category

Next we explored the effect of the sexual selection category (i.e. density, mating system, operational sex ratio (OSR), post-mating competition, pre-mating competition, trait-based, other):

MetaData$SexSel_Category=as.factor(MetaData$SexSel_Category)
MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Postmating competition"))
Model_REML_by_cSexSelCat = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
  2.2014   -4.4028   13.5972   36.8619   15.6426   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0259  0.1609     62     no  Study_ID 
sigma^2.2  0.0212  0.1456    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 98) = 767.4092, p-val < .0001

Test of Moderators (coefficients 2:7):
QM(df = 6) = 73.3544, p-val < .0001

Model Results:

                                              estimate      se     zval    pval 
intrcpt                                        -0.0734  0.0695  -1.0561  0.2909 
factor(SexSel_Category)Other                    0.4643  0.1004   4.6254  <.0001 
factor(SexSel_Category)OSR                      0.7100  0.1377   5.1556  <.0001 
factor(SexSel_Category)Mating system            0.4771  0.0835   5.7155  <.0001 
factor(SexSel_Category)Premating competition    0.4007  0.0877   4.5670  <.0001 
factor(SexSel_Category)Density                  0.3292  0.1262   2.6083  0.0091 
factor(SexSel_Category)Trait-based              0.0878  0.0889   0.9874  0.3234 
                                                ci.lb   ci.ub      
intrcpt                                       -0.2095  0.0628      
factor(SexSel_Category)Other                   0.2675  0.6610  *** 
factor(SexSel_Category)OSR                     0.4401  0.9799  *** 
factor(SexSel_Category)Mating system           0.3135  0.6406  *** 
factor(SexSel_Category)Premating competition   0.2287  0.5726  *** 
factor(SexSel_Category)Density                 0.0818  0.5766   ** 
factor(SexSel_Category)Trait-based            -0.0865  0.2621      

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Trait-based"))
Model_REML_by_cSexSelCat2 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat2)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Density"))
Model_REML_by_cSexSelCat3 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat3)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Premating competition"))
Model_REML_by_cSexSelCat4 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat4)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Mating system"))
Model_REML_by_cSexSelCat5 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat5)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("OSR"))
Model_REML_by_cSexSelCat6 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat6)

MetaData$SexSel_Category=relevel(MetaData$SexSel_Category,c("Other"))
Model_REML_by_cSexSelCat7 = rma.mv(r ~ factor(SexSel_Category), V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSexSelCat7)

Finally, we computed FDR corrected p-values:

tab2=as.data.frame(round(p.adjust(c(0.2909, 0.7974, 0.0156, .0001, .0001, .0001, .0001), method = 'fdr'),digit=3),row.names=cbind("Postmating competition","Trait-based","Density",'Premating competition',"Mating system","OSR","Other"))
colnames(tab2)<-cbind('P-value')
tab2
                       P-value
Postmating competition   0.339
Trait-based              0.797
Density                  0.022
Premating competition    0.000
Mating system            0.000
OSR                      0.000
Other                    0.000

Phylogenetic classes

Next we explored the effect of the phylogenetic classes:

MetaData$Class=relevel(MetaData$Class,c("Actinopterygii"))
Model_cREML_by_Class5 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class5)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-16.3766   32.7533   56.7533   87.3998   60.5581   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     62     no  Study_ID 
sigma^2.2  0.0653  0.2555    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 95) = 881.3207, p-val < .0001

Test of Moderators (coefficients 2:10):
QM(df = 9) = 22.4089, p-val = 0.0077

Model Results:

                estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt           0.1906  0.0991   1.9235  0.0544  -0.0036  0.3849  . 
ClassAmphibia    -0.1204  0.1355  -0.8887  0.3742  -0.3860  0.1452    
ClassAnimalia     0.0353  0.2180   0.1618  0.8714  -0.3920  0.4625    
ClassAves        -0.0397  0.1123  -0.3532  0.7240  -0.2598  0.1804    
ClassInsecta      0.0434  0.1589   0.2735  0.7845  -0.2679  0.3548    
ClassMammalia     0.2046  0.1102   1.8560  0.0635  -0.0115  0.4207  . 
ClassNematoda     0.2315  0.2378   0.9734  0.3304  -0.2346  0.6976    
ClassPisces       0.0677  0.2784   0.2431  0.8079  -0.4780  0.6134    
ClassReptilia    -0.1148  0.1317  -0.8715  0.3835  -0.3729  0.1434    
ClassTrematoda   -0.2027  0.2298  -0.8820  0.3778  -0.6530  0.2477    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Amphibia"))
Model_cREML_by_Class4 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class4)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-16.3766   32.7533   56.7533   87.3998   60.5581   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     62     no  Study_ID 
sigma^2.2  0.0653  0.2555    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 95) = 881.3207, p-val < .0001

Test of Moderators (coefficients 2:10):
QM(df = 9) = 22.4089, p-val = 0.0077

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub     
intrcpt                0.0702  0.0924   0.7593  0.4477  -0.1110  0.2514     
ClassActinopterygii    0.1204  0.1355   0.8887  0.3742  -0.1452  0.3860     
ClassAnimalia          0.1557  0.2150   0.7241  0.4690  -0.2658  0.5772     
ClassAves              0.0808  0.1065   0.7587  0.4480  -0.1279  0.2894     
ClassInsecta           0.1639  0.1548   1.0587  0.2897  -0.1395  0.4673     
ClassMammalia          0.3251  0.1043   3.1166  0.0018   0.1206  0.5295  ** 
ClassNematoda          0.3519  0.2351   1.4968  0.1345  -0.1089  0.8128     
ClassPisces            0.1881  0.2761   0.6813  0.4957  -0.3531  0.7293     
ClassReptilia          0.0056  0.1268   0.0445  0.9645  -0.2428  0.2541     
ClassTrematoda        -0.0822  0.2270  -0.3623  0.7171  -0.5271  0.3627     

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Animalia"))
Model_cREML_by_Class11 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class11)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-16.3766   32.7533   56.7533   87.3998   60.5581   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     62     no  Study_ID 
sigma^2.2  0.0653  0.2555    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 95) = 881.3207, p-val < .0001

Test of Moderators (coefficients 2:10):
QM(df = 9) = 22.4089, p-val = 0.0077

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt                0.2259  0.1942   1.1635  0.2446  -0.1546  0.6064    
ClassAmphibia         -0.1557  0.2150  -0.7241  0.4690  -0.5772  0.2658    
ClassActinopterygii   -0.0353  0.2180  -0.1618  0.8714  -0.4625  0.3920    
ClassAves             -0.0749  0.2012  -0.3724  0.7096  -0.4693  0.3194    
ClassInsecta           0.0082  0.2305   0.0355  0.9717  -0.4435  0.4599    
ClassMammalia          0.1693  0.2001   0.8464  0.3973  -0.2228  0.5615    
ClassNematoda          0.1962  0.2906   0.6753  0.4995  -0.3733  0.7657    
ClassPisces            0.0324  0.3246   0.0998  0.9205  -0.6039  0.6687    
ClassReptilia         -0.1501  0.2127  -0.7057  0.4804  -0.5669  0.2667    
ClassTrematoda        -0.2379  0.2840  -0.8377  0.4022  -0.7946  0.3187    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Aves"))
Model_cREML_by_Class = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-16.3766   32.7533   56.7533   87.3998   60.5581   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     62     no  Study_ID 
sigma^2.2  0.0653  0.2555    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 95) = 881.3207, p-val < .0001

Test of Moderators (coefficients 2:10):
QM(df = 9) = 22.4089, p-val = 0.0077

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub      
intrcpt                0.1510  0.0528   2.8577  0.0043   0.0474  0.2545   ** 
ClassAnimalia          0.0749  0.2012   0.3724  0.7096  -0.3194  0.4693      
ClassAmphibia         -0.0808  0.1065  -0.7587  0.4480  -0.2894  0.1279      
ClassActinopterygii    0.0397  0.1123   0.3532  0.7240  -0.1804  0.2598      
ClassInsecta           0.0831  0.1349   0.6159  0.5380  -0.1814  0.3476      
ClassMammalia          0.2443  0.0716   3.4126  0.0006   0.1040  0.3846  *** 
ClassNematoda          0.2712  0.2226   1.2184  0.2231  -0.1650  0.7074      
ClassPisces            0.1073  0.2655   0.4043  0.6860  -0.4130  0.6277      
ClassReptilia         -0.0751  0.1016  -0.7396  0.4595  -0.2742  0.1240      
ClassTrematoda        -0.1630  0.2139  -0.7620  0.4461  -0.5823  0.2563      

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Insecta"))
Model_cREML_by_Class8 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class8)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-16.3766   32.7533   56.7533   87.3998   60.5581   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     62     no  Study_ID 
sigma^2.2  0.0653  0.2555    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 95) = 881.3207, p-val < .0001

Test of Moderators (coefficients 2:10):
QM(df = 9) = 22.4089, p-val = 0.0077

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt                0.2341  0.1242   1.8851  0.0594  -0.0093  0.4774  . 
ClassAves             -0.0831  0.1349  -0.6159  0.5380  -0.3476  0.1814    
ClassAnimalia         -0.0082  0.2305  -0.0355  0.9717  -0.4599  0.4435    
ClassAmphibia         -0.1639  0.1548  -1.0587  0.2897  -0.4673  0.1395    
ClassActinopterygii   -0.0434  0.1589  -0.2735  0.7845  -0.3548  0.2679    
ClassMammalia          0.1612  0.1332   1.2097  0.2264  -0.1000  0.4223    
ClassNematoda          0.1880  0.2493   0.7543  0.4507  -0.3006  0.6767    
ClassPisces            0.0242  0.2883   0.0841  0.9330  -0.5408  0.5893    
ClassReptilia         -0.1582  0.1515  -1.0446  0.2962  -0.4551  0.1387    
ClassTrematoda        -0.2461  0.2417  -1.0185  0.3085  -0.7198  0.2275    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Mammalia"))
Model_cREML_by_Class3 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class3)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-16.3766   32.7533   56.7533   87.3998   60.5581   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     62     no  Study_ID 
sigma^2.2  0.0653  0.2555    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 95) = 881.3207, p-val < .0001

Test of Moderators (coefficients 2:10):
QM(df = 9) = 22.4089, p-val = 0.0077

Model Results:

                     estimate      se     zval    pval    ci.lb    ci.ub      
intrcpt                0.3952  0.0483   8.1823  <.0001   0.3006   0.4899  *** 
ClassInsecta          -0.1612  0.1332  -1.2097  0.2264  -0.4223   0.1000      
ClassAves             -0.2443  0.0716  -3.4126  0.0006  -0.3846  -0.1040  *** 
ClassAnimalia         -0.1693  0.2001  -0.8464  0.3973  -0.5615   0.2228      
ClassAmphibia         -0.3251  0.1043  -3.1166  0.0018  -0.5295  -0.1206   ** 
ClassActinopterygii   -0.2046  0.1102  -1.8560  0.0635  -0.4207   0.0115    . 
ClassNematoda          0.0269  0.2215   0.1213  0.9034  -0.4073   0.4611      
ClassPisces           -0.1369  0.2646  -0.5175  0.6048  -0.6556   0.3817      
ClassReptilia         -0.3194  0.0993  -3.2164  0.0013  -0.5140  -0.1248   ** 
ClassTrematoda        -0.4073  0.2129  -1.9133  0.0557  -0.8245   0.0099    . 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Nematoda"))
Model_cREML_by_Class10 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class10)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-16.3766   32.7533   56.7533   87.3998   60.5581   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     62     no  Study_ID 
sigma^2.2  0.0653  0.2555    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 95) = 881.3207, p-val < .0001

Test of Moderators (coefficients 2:10):
QM(df = 9) = 22.4089, p-val = 0.0077

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt                0.4221  0.2162   1.9525  0.0509  -0.0016  0.8459  . 
ClassMammalia         -0.0269  0.2215  -0.1213  0.9034  -0.4611  0.4073    
ClassInsecta          -0.1880  0.2493  -0.7543  0.4507  -0.6767  0.3006    
ClassAves             -0.2712  0.2226  -1.2184  0.2231  -0.7074  0.1650    
ClassAnimalia         -0.1962  0.2906  -0.6753  0.4995  -0.7657  0.3733    
ClassAmphibia         -0.3519  0.2351  -1.4968  0.1345  -0.8128  0.1089    
ClassActinopterygii   -0.2315  0.2378  -0.9734  0.3304  -0.6976  0.2346    
ClassPisces           -0.1638  0.3383  -0.4843  0.6282  -0.8269  0.4992    
ClassReptilia         -0.3463  0.2330  -1.4865  0.1372  -0.8029  0.1103    
ClassTrematoda        -0.4342  0.2995  -1.4495  0.1472  -1.0213  0.1529    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Pisces"))
Model_cREML_by_Class6 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class6)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-16.3766   32.7533   56.7533   87.3998   60.5581   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     62     no  Study_ID 
sigma^2.2  0.0653  0.2555    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 95) = 881.3207, p-val < .0001

Test of Moderators (coefficients 2:10):
QM(df = 9) = 22.4089, p-val = 0.0077

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt                0.2583  0.2602   0.9927  0.3208  -0.2517  0.7683    
ClassNematoda          0.1638  0.3383   0.4843  0.6282  -0.4992  0.8269    
ClassMammalia          0.1369  0.2646   0.5175  0.6048  -0.3817  0.6556    
ClassInsecta          -0.0242  0.2883  -0.0841  0.9330  -0.5893  0.5408    
ClassAves             -0.1073  0.2655  -0.4043  0.6860  -0.6277  0.4130    
ClassAnimalia         -0.0324  0.3246  -0.0998  0.9205  -0.6687  0.6039    
ClassAmphibia         -0.1881  0.2761  -0.6813  0.4957  -0.7293  0.3531    
ClassActinopterygii   -0.0677  0.2784  -0.2431  0.8079  -0.6134  0.4780    
ClassReptilia         -0.1825  0.2743  -0.6653  0.5059  -0.7200  0.3551    
ClassTrematoda        -0.2704  0.3327  -0.8126  0.4164  -0.9224  0.3817    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Reptilia"))
Model_cREML_by_Class2 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class2)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-16.3766   32.7533   56.7533   87.3998   60.5581   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     62     no  Study_ID 
sigma^2.2  0.0653  0.2555    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 95) = 881.3207, p-val < .0001

Test of Moderators (coefficients 2:10):
QM(df = 9) = 22.4089, p-val = 0.0077

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub     
intrcpt                0.0758  0.0868   0.8740  0.3821  -0.0942  0.2459     
ClassPisces            0.1825  0.2743   0.6653  0.5059  -0.3551  0.7200     
ClassNematoda          0.3463  0.2330   1.4865  0.1372  -0.1103  0.8029     
ClassMammalia          0.3194  0.0993   3.2164  0.0013   0.1248  0.5140  ** 
ClassInsecta           0.1582  0.1515   1.0446  0.2962  -0.1387  0.4551     
ClassAves              0.0751  0.1016   0.7396  0.4595  -0.1240  0.2742     
ClassAnimalia          0.1501  0.2127   0.7057  0.4804  -0.2667  0.5669     
ClassAmphibia         -0.0056  0.1268  -0.0445  0.9645  -0.2541  0.2428     
ClassActinopterygii    0.1148  0.1317   0.8715  0.3835  -0.1434  0.3729     
ClassTrematoda        -0.0879  0.2247  -0.3911  0.6958  -0.5284  0.3526     

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
MetaData$Class=relevel(MetaData$Class,c("Trematoda"))
Model_cREML_by_Class9 = rma.mv(r ~ Class, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Class9)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-16.3766   32.7533   56.7533   87.3998   60.5581   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     62     no  Study_ID 
sigma^2.2  0.0653  0.2555    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 95) = 881.3207, p-val < .0001

Test of Moderators (coefficients 2:10):
QM(df = 9) = 22.4089, p-val = 0.0077

Model Results:

                     estimate      se     zval    pval    ci.lb   ci.ub    
intrcpt               -0.0121  0.2073  -0.0581  0.9536  -0.4184  0.3943    
ClassReptilia          0.0879  0.2247   0.3911  0.6958  -0.3526  0.5284    
ClassPisces            0.2704  0.3327   0.8126  0.4164  -0.3817  0.9224    
ClassNematoda          0.4342  0.2995   1.4495  0.1472  -0.1529  1.0213    
ClassMammalia          0.4073  0.2129   1.9133  0.0557  -0.0099  0.8245  . 
ClassInsecta           0.2461  0.2417   1.0185  0.3085  -0.2275  0.7198    
ClassAves              0.1630  0.2139   0.7620  0.4461  -0.2563  0.5823    
ClassAnimalia          0.2379  0.2840   0.8377  0.4022  -0.3187  0.7946    
ClassAmphibia          0.0822  0.2270   0.3623  0.7171  -0.3627  0.5271    
ClassActinopterygii    0.2027  0.2298   0.8820  0.3778  -0.2477  0.6530    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Finally, we computed FDR corrected p-values:

tab2=as.data.frame(round(p.adjust(c(0.0043, 0.3821, .0001, 0.4477, 0.0544, 0.3208, 0.0594, 0.9536, 0.0509, 0.2446), method = 'fdr'),digit=3),row.names=cbind( "Animalia","Nematoda","Trematoda","Insecta","Pisces" ,"Actinopterygii","Amphibia","Mammalia","Reptilia","Aves"))
colnames(tab2)<-cbind('P-value')
tab2
               P-value
Animalia         0.021
Nematoda         0.478
Trematoda        0.001
Insecta          0.497
Pisces           0.119
Actinopterygii   0.458
Amphibia         0.119
Mammalia         0.954
Reptilia         0.119
Aves             0.408

Type of SSD measure

Next we explored the effect of the type of SSD measure (i.e. body mass or size):

MetaData$SSD_Proxy=as.factor(MetaData$SSD_Proxy)
MetaData$SSD_Proxy=relevel(MetaData$SSD_Proxy,c("Body mass"))
Model_REML_by_cSSDMeasure = rma.mv(r ~ SSD_Proxy, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSSDMeasure)

Multivariate Meta-Analysis Model (k = 103; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-20.0433   40.0866   48.0866   58.5471   48.5033   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     61     no  Study_ID 
sigma^2.2  0.0706  0.2658    103     no     Index 

Test for Residual Heterogeneity:
QE(df = 101) = 1236.9117, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 9.8855, p-val = 0.0017

Model Results:

                    estimate      se     zval    pval    ci.lb    ci.ub      
intrcpt               0.3297  0.0428   7.6972  <.0001   0.2457   0.4136  *** 
SSD_ProxyBody size   -0.1836  0.0584  -3.1441  0.0017  -0.2980  -0.0691   ** 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$SSD_Proxy=relevel(MetaData$SSD_Proxy,c("Body size"))
Model_REML_by_cSSDMeasure2 = rma.mv(r ~ SSD_Proxy, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cSSDMeasure2)

Finally, we computed FDR corrected p-values:

tab3=as.data.frame(round(p.adjust(c(.0001, 0.0002), method = 'fdr'),digit=3),row.names=cbind("Body mass","Body size"))
colnames(tab3)<-cbind('P-value')
tab3
          P-value
Body mass       0
Body size       0

SSD measure controlled for body size?

Next we explored the effect if the primary study controlled the SSD for body size (i.e. uncontrolled or controlled):

MetaData$BodySizeControlled=as.factor(MetaData$BodySizeControlled)
MetaData$BodySizeControlled=relevel(MetaData$BodySizeControlled,c("No"))
Model_REML_by_cBodySizeCont = rma.mv(r ~ BodySizeControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cBodySizeCont)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-23.0332   46.0664   54.0664   64.6054   54.4746   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0206  0.1436     62     no  Study_ID 
sigma^2.2  0.0578  0.2404    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 103) = 1297.2607, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 1.1120, p-val = 0.2916

Model Results:

                       estimate      se     zval    pval    ci.lb   ci.ub      
intrcpt                  0.2517  0.0362   6.9573  <.0001   0.1808  0.3226  *** 
BodySizeControlledYes   -0.0977  0.0927  -1.0545  0.2916  -0.2794  0.0839      

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We then re-leveled the model for post-hoc comparisons:

MetaData$BodySizeControlled=relevel(MetaData$BodySizeControlled,c("Yes"))
Model_REML_by_cBodySizeCont2 = rma.mv(r ~ BodySizeControlled, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_REML_by_cBodySizeCont2)

Finally, we computed FDR corrected p-values:

tab4=as.data.frame(round(p.adjust(c(.0001, 0.0712), method = 'fdr'),digit=3),row.names=cbind("uncontrolled","controlled"))
colnames(tab4)<-cbind('P-value')
tab4
             P-value
uncontrolled   0.000
controlled     0.071

Percentage of species with female-biased SSD

Model_cREML_SSbias         = rma.mv(r ~ SSD_SexBias_in_perc_F, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_SSbias)

Multivariate Meta-Analysis Model (k = 91; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-18.4446   36.8892   44.8892   54.8438   45.3654   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0217  0.1474     53     no  Study_ID 
sigma^2.2  0.0548  0.2341     91     no     Index 

Test for Residual Heterogeneity:
QE(df = 89) = 1207.9887, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 6.1191, p-val = 0.0134

Model Results:

                       estimate      se     zval    pval    ci.lb    ci.ub      
intrcpt                  0.3627  0.0564   6.4284  <.0001   0.2521   0.4733  *** 
SSD_SexBias_in_perc_F   -0.0029  0.0012  -2.4737  0.0134  -0.0051  -0.0006    * 

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Test for publication bias

Model_cREML_PublBias         = rma.mv(z ~ SE_z, V=rep(((mean(SE_z)*mean(SE_z))*N),length(SE_z)), data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_PublBias)

Multivariate Meta-Analysis Model (k = 105; method: REML)

   logLik   Deviance        AIC        BIC       AICc   
-131.2805   262.5610   270.5610   281.0999   270.9692   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0000  0.0000     62     no  Study_ID 
sigma^2.2  0.0000  0.0000    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 103) = 15.0179, p-val = 1.0000

Test of Moderators (coefficient 2):
QM(df = 1) = 1.7899, p-val = 0.1809

Model Results:

         estimate      se    zval    pval    ci.lb   ci.ub    
intrcpt    0.1410  0.1956  0.7207  0.4711  -0.2424  0.5243    
SE_z       0.8522  0.6369  1.3379  0.1809  -0.3962  2.1006    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Publication year

Next we explored the effect of the publication year of each study:

Model_cREML_by_Year = rma.mv(r ~ Year, V=Var_r, data = MetaData, random = c(~ 1 | Study_ID,~ 1 | Index), method = "REML")
summary(Model_cREML_by_Year)

Multivariate Meta-Analysis Model (k = 105; method: REML)

  logLik  Deviance       AIC       BIC      AICc   
-22.7935   45.5871   53.5871   64.1260   53.9953   

Variance Components:

            estim    sqrt  nlvls  fixed    factor 
sigma^2.1  0.0243  0.1560     62     no  Study_ID 
sigma^2.2  0.0544  0.2333    105     no     Index 

Test for Residual Heterogeneity:
QE(df = 103) = 1165.7023, p-val < .0001

Test of Moderators (coefficient 2):
QM(df = 1) = 1.5764, p-val = 0.2093

Model Results:

         estimate      se     zval    pval    ci.lb    ci.ub    
intrcpt    9.3614  7.2665   1.2883  0.1976  -4.8806  23.6034    
Year      -0.0045  0.0036  -1.2555  0.2093  -0.0116   0.0025    

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

sessionInfo()
R version 4.4.0 (2024-04-24 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 10 x64 (build 19045)

Matrix products: default


locale:
[1] LC_COLLATE=German_Germany.utf8  LC_CTYPE=German_Germany.utf8   
[3] LC_MONETARY=German_Germany.utf8 LC_NUMERIC=C                   
[5] LC_TIME=German_Germany.utf8    

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gridExtra_2.3       wesanderson_0.3.7   PupillometryR_0.0.5
 [4] rlang_1.1.3         dplyr_1.1.4         cowplot_1.1.3      
 [7] ggdist_3.3.2        MCMCglmm_2.36       coda_0.19-4.1      
[10] RColorBrewer_1.1-3  ggplot2_3.5.1       data.table_1.15.4  
[13] multcomp_1.4-26     TH.data_1.1-2       survival_3.5-8     
[16] mvtnorm_1.2-4       psych_2.4.6.26      pwr_1.3-0          
[19] MASS_7.3-60.2       metafor_4.6-0       numDeriv_2016.8-1.1
[22] metadat_1.2-0       Matrix_1.7-0        matrixcalc_1.0-6   
[25] ape_5.8             workflowr_1.7.1    

loaded via a namespace (and not attached):
 [1] tensorA_0.36.2.1     gtable_0.3.5         xfun_0.43           
 [4] bslib_0.7.0          processx_3.8.4       lattice_0.22-6      
 [7] callr_3.7.6          mathjaxr_1.6-0       vctrs_0.6.5         
[10] tools_4.4.0          ps_1.7.6             generics_0.1.3      
[13] parallel_4.4.0       sandwich_3.1-0       tibble_3.2.1        
[16] fansi_1.0.6          pkgconfig_2.0.3      distributional_0.4.0
[19] cubature_2.1.0       lifecycle_1.0.4      compiler_4.4.0      
[22] stringr_1.5.1        git2r_0.33.0         munsell_0.5.1       
[25] mnormt_2.1.1         getPass_0.2-4        codetools_0.2-20    
[28] httpuv_1.6.15        htmltools_0.5.8.1    sass_0.4.9          
[31] yaml_2.3.8           tidyr_1.3.1          later_1.3.2         
[34] pillar_1.9.0         jquerylib_0.1.4      whisker_0.4.1       
[37] cachem_1.0.8         nlme_3.1-164         tidyselect_1.2.1    
[40] digest_0.6.35        stringi_1.8.4        purrr_1.0.2         
[43] splines_4.4.0        rprojroot_2.0.4      fastmap_1.1.1       
[46] grid_4.4.0           colorspace_2.1-0     cli_3.6.2           
[49] magrittr_2.0.3       utf8_1.2.4           corpcor_1.6.10      
[52] withr_3.0.0          scales_1.3.0         promises_1.3.0      
[55] rmarkdown_2.26       httr_1.4.7           zoo_1.8-12          
[58] evaluate_0.23        knitr_1.46           Rcpp_1.0.12         
[61] glue_1.7.0           rstudioapi_0.16.0    jsonlite_1.8.8      
[64] R6_2.5.1             fs_1.6.4